Journal of Statistical Physics

, Volume 154, Issue 1–2, pp 334–355 | Cite as

Evolutionary Accessibility of Modular Fitness Landscapes

Article

Abstract

A fitness landscape is a mapping from the space of genetic sequences, which is modeled here as a binary hypercube of dimension L, to the real numbers. We consider random models of fitness landscapes, where fitness values are assigned according to some probabilistic rule, and study the statistical properties of pathways to the global fitness maximum along which fitness increases monotonically. Such paths are important for evolution because they are the only ones that are accessible to an adapting population when mutations occur at a low rate. The focus of this work is on the block model introduced by A.S. Perelson and C.A. Macken (Proc. Natl. Acad. Sci. USA 92:9657, 1995) where the genome is decomposed into disjoint sets of loci (‘modules’) that contribute independently to fitness, and fitness values within blocks are assigned at random. We show that the number of accessible paths can be written as a product of the path numbers within the blocks, which provides a detailed analytic description of the path statistics. The block model can be viewed as a special case of Kauffman’s NK-model, and we compare the analytic results to simulations of the NK-model with different genetic architectures. We find that the mean number of accessible paths in the different versions of the model are quite similar, but the distribution of the path number is qualitatively different in the block model due to its multiplicative structure. A similar statement applies to the number of local fitness maxima in the NK-models, which has been studied extensively in previous works. The overall evolutionary accessibility of the landscape, as quantified by the probability to find at least one accessible path to the global maximum, is dramatically lowered by the modular structure.

Keywords

Evolution Fitness landscapes Adaptive walks Spin glasses 

References

  1. 1.
    Travisano, M., Mongold, J.A., Bennett, A.F., Lenski, R.E.: Experimental tests of the roles of adaptation, chance, and history of evolution. Science 267, 87–90 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    Hall, B.G.: Predicting evolution by in vitro evolution requires determining evolutionary pathways. Antimicrob. Agents Chemother. 46, 3035–3038 (2002) CrossRefGoogle Scholar
  3. 3.
    Jain, K., Krug, J.: Deterministic and stochastic regimes of asexual evolution on rugged fitness landscapes. Genetics 175, 1275–1288 (2007) CrossRefGoogle Scholar
  4. 4.
    Conway Morris, S.: Evolution: like any other science it is predictable. Phil. Trans. R. Soc. B 365, 133–145 (2010) CrossRefGoogle Scholar
  5. 5.
    Lobkovsky, A.E., Koonin, E.V.: Replaying the tape of life: quantification of the predictability of evolution. Frontiers Genet. 3, 246 (2012) CrossRefGoogle Scholar
  6. 6.
    Szendro, I.G., Franke, J., de Visser, J.A.G.M., Krug, J.: Predictability of evolution depends nonmonotonically on population size. Proc. Natl. Acad. Sci. 110, 571–576 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    Gillespie, J.H.: Some properties of finite populations experiencing strong selection and weak mutation. Am. Nat. 121, 691–708 (1983) CrossRefGoogle Scholar
  8. 8.
    Macken, C.A., Perelson, A.S.: Protein evolution on rugged landscapes. Proc. Natl. Acad. Sci. USA 86, 6191–6195 (1989) ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Macken, C.A., Hagan, P., Perelson, A.S.: Evolutionary walks on rugged landscapes. SIAM J. Appl. Math. 51, 799–827 (1991) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Flyvbjerg, H., Lautrup, B.: Evolution in a rugged fitness landscape. Phys. Rev. A 46, 6714–6723 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    Orr, H.A.: The population genetics of adaptation: the adaptation of DNA sequences. Evolution 56, 1317–1330 (2002) Google Scholar
  12. 12.
    Neidhart, J., Krug, J.: Adaptive walks and extreme value theory. Phys. Rev. Lett. 107, 178102 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    Phillips, P.C.: Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867 (2008) CrossRefGoogle Scholar
  14. 14.
    Weinreich, D.M., Watson, R.A., Chao, L.: Perspective: sign epistasis and genetic constraints on evolutionary trajectories. Evolution 59, 1165–1174 (2005) Google Scholar
  15. 15.
    Poelwijk, F.J., Kiviet, D.J., Weinreich, D.M., Tans, S.J.: Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    Kvitek, D.J., Sherlock, G.: Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet. 7, e1002056 (2011) CrossRefGoogle Scholar
  17. 17.
    Poelwijk, F.J., Tănase-Nicola, S., Kiviet, D.J., Tans, S.J.: Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J. Theor. Biol. 272, 141–144 (2011) CrossRefGoogle Scholar
  18. 18.
    Crona, K., Greene, D., Barlow, M.: The peaks and geometry of fitness landscapes. J. Theor. Biol. 317, 1–10 (2013) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Weinreich, D.M., Delaney, N.F., DePristo, M.A., Hartl, D.M.: Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    Franke, J., Klözer, A., de Visser, J.A.G.M., Krug, J.: Evolutionary accessibility of mutational pathways. PLoS Comput. Biol. 7, e1002134 (2011) CrossRefGoogle Scholar
  21. 21.
    Szendro, I.G., Schenk, M.F., Krug, J., de Visser, J.A.G.M.: Quantitative analyses of empirical fitness landscapes. J. Stat. Mech.: Theory Exp. P01005 (2013) Google Scholar
  22. 22.
    Klözer, A.: NK fitness landscapes. Diploma thesis, University of Cologne (2008) Google Scholar
  23. 23.
    Carneiro, M., Hartl, D.L.: Adaptive landscapes and protein evolution. Proc. Natl. Acad. Sci. USA 107, 1747–1751 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    Franke, J., Krug, J.: Evolutionary accessibility in tunably rugged fitness landscapes. J. Stat. Phys. 148, 705–722 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    Hegarty, P., Martinsson, A.: On the existence of accessible paths in various models of fitness landscapes, arXiv:1210.4798 (2012). To appear in Ann. Appl. Probab.
  26. 26.
    Nowak, S., Krug, J.: Accessibility percolation on n-trees. Europhys. Lett. 101, 66004 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    Berestycki, J., Brunet, É., Shi, Z.: How many evolutionary histories only increase fitness? Preprint. arXiv:1304.0246 (2013)
  28. 28.
    Roberts, M.I., Zhao, L.Z.: Increasing paths in trees. Preprint. arXiv:1305.0814 (2013)
  29. 29.
    Kingman, J.F.C.: A simple model for the balance between mutation and selection. J. Appl. Probab. 15, 1–12 (1978) CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Aita, T., Uchiyama, H., Inaoka, T., Nakajima, M., Kokubo, T., et al.: Analysis of a local fitness landscape with a model of the rough Mt. Fuji-type landscape: application to protyl endopeptidase and thermolysis. Biopolymers 54, 64–79 (2000) CrossRefGoogle Scholar
  32. 32.
    Franke, J., Wergen, G., Krug, J.: Records and sequences of records from random variables with a linear drift. J. Stat. Mech.: Theor. Exp. P10013 (2010) Google Scholar
  33. 33.
    Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes and its application to maturation of the immune response. J. Theor. Biol. 141, 211–245 (1989) CrossRefGoogle Scholar
  34. 34.
    Kauffman, S.A.: The Origins of Order. Oxford University Press, London (1993) Google Scholar
  35. 35.
    Neidhart, J., Szendro, I.G., Krug, J.: Exact results for amplitude spectra of fitness landscapes. J. Theor. Biol. 332, 218–227 (2013) CrossRefMathSciNetGoogle Scholar
  36. 36.
    Perelson, A.S., Macken, C.A.: Protein evolution on partially correlated landscapes. Proc. Natl. Acad. Sci. USA 92, 8657–9661 (1995) CrossRefGoogle Scholar
  37. 37.
    Stadler, P.F., Happel, R.: Random field models for fitness landscapes. J. Math. Biol. 38, 435–478 (1999) CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Mézard, M., Parisi, G., Virasoro, M.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987) MATHGoogle Scholar
  39. 39.
    Bovier, A.: Statistical Mechanics of Disordered Systems: A Mathematical Perspective. Cambridge University Press, Cambridge (2006) CrossRefGoogle Scholar
  40. 40.
    Derrida, B.: Random-energy model: limit of a family of disordered models. Phys. Rev. Lett. 45, 79–82 (1980) ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    Derrida, B.: Random-energy model: limit of a family of disordered systems. Phys. Rev. B 24, 2613–2626 (1981) ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    Baldi, P., Rinott, Y.: Asymptotic normality of some graph-related statistics. J. Appl. Probab. 26, 171–175 (1989) CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Haldane, J.B.S.: A mathematical theory of natural selection. Part VIII. Metastable populations. Proc. Camb. Philos. Soc. 27, 137–142 (1931) ADSCrossRefMATHGoogle Scholar
  44. 44.
    Weinberger, E.D.: Local properties of Kauffman’s N-k model: a tunably rugged energy landscape. Phys. Rev. A 44, 6399–6413 (1991) ADSCrossRefGoogle Scholar
  45. 45.
    Fontana, W., Stadler, P.F., Bornberg-Bauer, E.G., Griesmacher, T., Hofacker, I.L., Tacker, M., Tarazona, P., Weinberger, E.D., Schuster, P.: Rna folding and combinatory landscapes. Phys. Rev. E 47, 2083–2099 (1993) ADSCrossRefGoogle Scholar
  46. 46.
    Altenberg, L.: NK fitness landscapes. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation. IOP Publishing, Bristol (1997) Google Scholar
  47. 47.
    Campos, P., Adami, C., Wilke, C.: Optimal adaptive performance and delocalization in NK fitness landscapes. Physica A 304, 495–506 (2002). Ibid. 318, 637 (2003). Erratum ADSCrossRefMATHGoogle Scholar
  48. 48.
    Evans, S.N., Steinsaltz, D.: Estimating some features of NK fitness landscapes. Ann. Appl. Probab. 12, 1299–1321 (2002) CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Durrett, R., Limic, V.: Rigorous results for the NK model. Ann. Probab. 31, 1713–1753 (2003) CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Limic, V., Pemantle, R.: More rigorous results on the Kauffman-Levin model of evolution. Ann. Probab. 32, 2149–2178 (2004) CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Gokhale, C.S., Iwasa, Y., Nowak, M.A., Traulsen, A.: The pace of evolution across fitness valleys. J. Theor. Biol. 259, 613–620 (2009) CrossRefMathSciNetGoogle Scholar
  52. 52.
    Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. Wiley, New York (2000) CrossRefMATHGoogle Scholar
  53. 53.
    Watson, R.A., Weinreich, D.M., Wakeley, J.: Genome structure and the benefits of sex. Evolution 65, 523–536 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of CologneCologneGermany

Personalised recommendations