Skip to main content
Log in

Exact Scaling in the Expansion-Modification System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This work is devoted to the study of the scaling, and the consequent power-law behavior, of the correlation function in a mutation-replication model known as the expansion-modification system. The latter is a biology inspired random substitution model for the genome evolution, which is defined on a binary alphabet and depends on a parameter interpreted as a mutation probability. We prove that the time-evolution of this system is such that any initial measure converges towards a unique stationary one exhibiting decay of correlations not slower than a power-law. We then prove, for a significant range of mutation probabilities, that the decay of correlations indeed follows a power-law with scaling exponent smoothly depending on the mutation probability. Finally we put forward an argument which allows us to give a closed expression for the corresponding scaling exponent for all the values of the mutation probability. Such a scaling exponent turns out to be a piecewise smooth function of the parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. According to our numerical computations.

References

  1. Alvarez-Martínez, R., Martínez-Mekler, G., Cocho, G.: Order-disorder transition in conflicting dynamics leading to rank-frequency generalized beta distributions. Physica A 390(1), 120–130 (2011)

    Article  ADS  Google Scholar 

  2. Buldyrev, A.L., Goldberger, A.L., Havlin, S., Mantegna, R.N., Matsa, M.E., Peng, C.-K., Simons, M., Stanley, H.E.: Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys. Rev. E 51, 5084–5091 (1995)

    Article  ADS  Google Scholar 

  3. Godrèche, C., Luck, J.M.: Quasiperiodicity and randomness in tilings of the plane. J. Stat. Phys. 55(1/2), 1–28 (1989)

    Article  ADS  MATH  Google Scholar 

  4. Koslicki, D.: Substitution Markov chains with applications to molecular evolution. Ph.D. Dissertation, Pennsylvania State University (2012)

  5. Li, W.: Spatial l/f spectra in open dynamical systems. Europhys. Lett. 10(5), 395–400 (1989)

    Article  ADS  Google Scholar 

  6. Li, W.: Expansion-modification systems: a model for spatial 1/f spectra. Phys. Rev. A 43(10), 5240–5260 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  7. Li, W., Kaneko, K.: Long-range correlation and partial 1/f a spectrum in a noncoding DNA sequence. Europhys. Lett. 17, 655–660 (1992)

    Article  ADS  Google Scholar 

  8. Li, W.: The study of correlation structures of DNA sequences: a critical review. Comput. Chem. 21, 257–271 (1997)

    Article  Google Scholar 

  9. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, M., Haussler, D.: The infinite site model of genome evolution. Proc. Natl. Acad. Sci. 105, 14254–14261 (2008)

    Article  ADS  Google Scholar 

  10. Mansilla, R., Cocho, G.: Multiscaling in expansion-modification systems: an explanation for long range correlation in DNA. Complex Syst. 12, 207–240 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Martínez-Mekler, G., Alvarez-Martínez, R., Beltrán del Río, M., Mansilla, R., Miramontes, P., Cocho, G.: Universality of rank-ordering distributions in the arts and sciences. PLoS ONE 4, e4791 (2008), 7 pp.

    Article  ADS  Google Scholar 

  12. Messer, P.W., Arndt, P.F., Lässig, M.: Solvable sequence evolution models and genomic correlations. Phys. Rev. Lett. 94, 138103 (2005)

    Article  ADS  Google Scholar 

  13. Peng, C.-K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sciortino, F., Simons, M., Stanley, H.E.: Long-range correlations in nucleotide sequences. Nature 356, 168–179 (1992)

    Article  ADS  Google Scholar 

  14. Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62(1), 26–29 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rocha, A.V., Simas, A.B., Toom, A.: Substitution operators. J. Stat. Phys. 143, 585–618 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Saakian, D.B.: Evolution models with base substitutions, insertions, deletions, and selection. Phys. Rev. E 78, 061920 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Sobottka, M., Hart, A.G.: A model capturing novel strand symmetries in bacterial DNA. Biochem. Biophys. Res. Commun. 410, 823–828 (2011)

    Article  Google Scholar 

  18. Zaks, M.: Multifractal Fourier spectra and power-law decay of correlations in random substitution sequences. Phys. Rev. E 65, 011111 (2001)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ugalde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado-García, R., Ugalde, E. Exact Scaling in the Expansion-Modification System. J Stat Phys 153, 842–863 (2013). https://doi.org/10.1007/s10955-013-0866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0866-x

Keywords

Navigation