Skip to main content

Entropy Production in Continuous Phase Space Systems

Abstract

We propose an alternative method to compute the environmental entropy production of a classical underdamped nonequilibrium system, not necessarily in detailed balance, in a continuous phase space. It is based on the idea that the Hamiltonian orbits of the corresponding isolated system can be regarded as microstates and that entropy is generated in the environment whenever the system moves from one microstate to another. This approach has the advantage that it is not necessary to distinguish between even and odd-parity variables. We show that the method leads to a different expression for the differential entropy production along an infinitesimal stochastic path. However, when integrating over all possible paths the local entropy production turns out to be the same as in previous studies. This demonstrates that the differential entropy production in continuous phase space systems is not uniquely defined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Seifert, U.: Rep. Prog. Phys. 75, 126001 (2012)

    ADS  Article  Google Scholar 

  2. Spinney, R.E., Ford, I.J.: Fluctuation relations: a pedagogical overview. In: Klages, R., Just, W., Jarzynski, C. (eds.) Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond. Wiley/VCH, Weinheim (2013)

    Google Scholar 

  3. Lebowitz, J.L., Spohn, H.: J. Stat. Phys. 95, 333 (1999)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  4. Gallavotti, G.: Chaos 14, 680 (2004)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  5. Andrieux, D., Gaspard, P.: J. Chem. Phys. 121, 6167 (2004)

    ADS  Article  Google Scholar 

  6. Seifert, U.: Phys. Rev. Lett. 95, 040602 (2005)

    ADS  Article  Google Scholar 

  7. Schnakenberg, J.: Rev. Mod. Phys. 48, 571 (1976)

    MathSciNet  ADS  Article  Google Scholar 

  8. Spinney, R.E., Ford, I.J.: Phys. Rev. E 85, 051113 (2012)

    ADS  Article  Google Scholar 

  9. Spinney, R.E., Ford, I.J.: Phys. Rev. Lett. 108, 170603 (2012)

    ADS  Article  Google Scholar 

  10. Lee, H.K., Kwon, C., Park, H.: Fluctuation theorems and entropy production with odd-parity variables. Phys. Rev. Lett. 110, 050602 (2013)

    ADS  Article  Google Scholar 

  11. Wissel, C.: Z. Phys. B 35, 185 (1979)

    MathSciNet  ADS  Google Scholar 

  12. Donoso, J.M., Salgado, J.J., Soler, M.: J. Phys. A, Math. Gen. 32, 3681 (1999)

    MathSciNet  ADS  Article  MATH  Google Scholar 

Download references

Acknowledgements

HH would like to thank U. Seifert and A.C. Barato for interesting discussions and helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Luposchainsky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luposchainsky, D., Hinrichsen, H. Entropy Production in Continuous Phase Space Systems. J Stat Phys 153, 828–841 (2013). https://doi.org/10.1007/s10955-013-0863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0863-0

Keywords

  • Entropy
  • Continuous phase space
  • Entropy production
  • Differential entropy
  • Continuum