Journal of Statistical Physics

, Volume 153, Issue 5, pp 828–841 | Cite as

Entropy Production in Continuous Phase Space Systems

  • David Luposchainsky
  • Haye Hinrichsen


We propose an alternative method to compute the environmental entropy production of a classical underdamped nonequilibrium system, not necessarily in detailed balance, in a continuous phase space. It is based on the idea that the Hamiltonian orbits of the corresponding isolated system can be regarded as microstates and that entropy is generated in the environment whenever the system moves from one microstate to another. This approach has the advantage that it is not necessary to distinguish between even and odd-parity variables. We show that the method leads to a different expression for the differential entropy production along an infinitesimal stochastic path. However, when integrating over all possible paths the local entropy production turns out to be the same as in previous studies. This demonstrates that the differential entropy production in continuous phase space systems is not uniquely defined.


Entropy Continuous phase space Entropy production Differential entropy Continuum 



HH would like to thank U. Seifert and A.C. Barato for interesting discussions and helpful remarks.


  1. 1.
    Seifert, U.: Rep. Prog. Phys. 75, 126001 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    Spinney, R.E., Ford, I.J.: Fluctuation relations: a pedagogical overview. In: Klages, R., Just, W., Jarzynski, C. (eds.) Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond. Wiley/VCH, Weinheim (2013) Google Scholar
  3. 3.
    Lebowitz, J.L., Spohn, H.: J. Stat. Phys. 95, 333 (1999) MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Gallavotti, G.: Chaos 14, 680 (2004) MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Andrieux, D., Gaspard, P.: J. Chem. Phys. 121, 6167 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    Seifert, U.: Phys. Rev. Lett. 95, 040602 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    Schnakenberg, J.: Rev. Mod. Phys. 48, 571 (1976) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Spinney, R.E., Ford, I.J.: Phys. Rev. E 85, 051113 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    Spinney, R.E., Ford, I.J.: Phys. Rev. Lett. 108, 170603 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    Lee, H.K., Kwon, C., Park, H.: Fluctuation theorems and entropy production with odd-parity variables. Phys. Rev. Lett. 110, 050602 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    Wissel, C.: Z. Phys. B 35, 185 (1979) MathSciNetADSGoogle Scholar
  12. 12.
    Donoso, J.M., Salgado, J.J., Soler, M.: J. Phys. A, Math. Gen. 32, 3681 (1999) MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Fakultät für Physik und AstronomieUniversität WürzburgWürzburgGermany

Personalised recommendations