Skip to main content
Log in

Matter Density and Relativistic Models of Wave Function Collapse

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Mathematical models for the stochastic evolution of wave functions that combine the unitary evolution according to the Schrödinger equation and the collapse postulate of quantum theory are well understood for non-relativistic quantum mechanics. Recently, there has been progress in making these models relativistic. But even with a fully relativistic law for the wave function evolution, a problem with relativity remains: Different Lorentz frames may yield conflicting values for the matter density at a space-time point. We propose here a relativistic law for the matter density function. According to our proposal, the matter density function at a space-time point x is obtained from the wave function ψ on the past light cone of x by setting the i-th particle position in |ψ|2 equal to x, integrating over the other particle positions, and averaging over i. We show that the predictions that follow from this proposal agree with all known experimental facts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adler, S.L.: Lower and upper bounds on CSL parameters from latent image formation and IGM heating. J. Phys. A, Math. Theor. 40, 2935–2957 (2007). arXiv:quant-ph/0605072

    Article  ADS  MATH  Google Scholar 

  2. Aharonov, Y., Albert, D.Z.: States and observables in relativistic quantum field theories. Phys. Rev. D 21, 3316–3324 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aharonov, Y., Albert, D.Z.: Can we make sense out of the measurement process in relativistic quantum mechanics? Phys. Rev. D 24, 359–370 (1981)

    Article  ADS  Google Scholar 

  4. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: On the common structure of Bohmian mechanics and the Ghirardi–Rimini–Weber theory. Br. J. Philos. Sci. 59, 353–389 (2008). arXiv:quant-ph/0603027

    Article  MATH  Google Scholar 

  5. Bedingham, D.: Relativistic state reduction dynamics. Found. Phys. 41, 686–704 (2011). arXiv:1003.2774

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bell, J.S.: Are there quantum jumps? In: Kilmister, C.W. (ed.) Schrödinger. Centenary Celebration of a Polymath, pp. 41–52. Cambridge University Press, Cambridge (1987). Reprinted as Chap. 22 of [7]

    Google Scholar 

  7. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  8. Benatti, F., Ghirardi, G.C., Grassi, R.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 25, 5–38 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Bloch, I.: Some relativistic oddities in the quantum theory of observation. Phys. Rev. 156, 1377–1384 (1967)

    Article  ADS  Google Scholar 

  10. Diósi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165–1174 (1989)

    Article  ADS  Google Scholar 

  11. Diósi, L.: Relativistic theory for continuous measurement of quantum fields. Phys. Rev. A 42, 5086–5092 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. Feldmann, W., Tumulka, R.: Parameter diagrams of the GRW and CSL theories of wave function collapse. J. Phys. A 45, 065304 (2012). arXiv:1109.6579

    Article  ADS  MathSciNet  Google Scholar 

  13. Ghirardi, G.C.: Some lessons from relativistic reduction models. In: Breuer, H.-P., Petruccione, F. (eds.) Open Systems and Measurement in Relativistic Quantum Theory, pp. 117–152. Springer, Berlin (1999)

    Chapter  Google Scholar 

  14. Ghirardi, G.C.: Local measurements of nonlocal observables and the relativistic reduction process. Found. Phys. 30, 1337–1385 (2000)

    Article  MathSciNet  Google Scholar 

  15. Ghirardi, G.C.: Collapse theories. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy (2007). Published online by Stanford University. http://plato.stanford.edu/entries/qm-collapse/

    Google Scholar 

  16. Ghirardi, G.C., Grassi, R., Pearle, P.: Relativistic dynamical reduction models: general framework and examples. Found. Phys. 20, 1271–1316 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Gisin, N., Percival, I.C.: The quantum state diffusion picture of physical processes. J. Phys. A, Math. Gen. 26, 2245–2260 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  19. Goldstein, S.: Quantum theory without observers. Part one. Phys. Today 51(3), 42–46 (1998)

    Article  Google Scholar 

  20. Goldstein, S.: Quantum theory without observers. Part two. Phys. Today 51(4), 38–42 (1998)

    Article  Google Scholar 

  21. Hellwig, K.-E., Kraus, K.: Formal description of measurements in local quantum field theory. Phys. Rev. D 1, 566–571 (1970)

    ADS  Google Scholar 

  22. Jones, G., Pearle, P., Ring, J.: Consequence for wavefunction collapse model of the sudbury neutrino observatory experiment. Found. Phys. 34, 1467–1474 (2004). arXiv:quant-ph/0411019

    Article  ADS  Google Scholar 

  23. Landau, L., Peierls, R.: Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie. Z. Phys. 69, 56–69 (1931)

    Article  ADS  Google Scholar 

  24. Leggett, A.J.: Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415–R451 (2002)

    Article  ADS  Google Scholar 

  25. Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 39, 2277–2289 (1989)

    Article  ADS  Google Scholar 

  26. Pearle, P.: Toward a relativistic theory of statevector reduction. In: Miller, A.I. (ed.) Sixty-Two Years of Uncertainty. NATO ASI Series, vol. 226. Plenum Press, New York (1990)

    Chapter  Google Scholar 

  27. Penrose, R.: Wavefunction collapse as a real gravitational effect. In: Fokas, A., Kibble, T.W.B., Grigoriou, A., Zegarlinski, B. (eds.) Mathematical Physics 2000, pp. 266–282. Imperial College Press, London (2000)

    Chapter  Google Scholar 

  28. Tumulka, R.: A relativistic version of the Ghirardi–Rimini–Weber model. J. Stat. Phys. 125, 821–840 (2006). arXiv:quant-ph/0406094

    Article  ADS  Google Scholar 

  29. Tumulka, R.: The ‘Unromantic pictures’ of quantum theory. J. Phys. A, Math. Theor. 40, 3245–3273 (2007). arXiv:quant-ph/0607124

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Tumulka, R.: The point processes of the GRW theory of wave function collapse. Rev. Math. Phys. 21, 155–227 (2009). arXiv:0711.0035

    Article  MATH  MathSciNet  Google Scholar 

  31. Weinberg, S.: Collapse of the state vector. Phys. Rev. A 85, 062116 (2012). arXiv:1109.6462

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.C.G. and N.Z. are supported in part by INFN, Sezioni di Trieste e Genova. D.D., S.G., G.C.G., and N.Z. are supported in part by the COST-Action MP1006. R.T. is supported in part by NSF Grant SES-0957568 and by the Trustees Research Fellowship Program at Rutgers, the State University of New Jersey. S.G. and R.T. are supported in part by grant No. 37433 from the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderich Tumulka.

Additional information

Dedicated to Herbert Spohn on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedingham, D., Dürr, D., Ghirardi, G. et al. Matter Density and Relativistic Models of Wave Function Collapse. J Stat Phys 154, 623–631 (2014). https://doi.org/10.1007/s10955-013-0814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0814-9

Keywords

Navigation