Abstract
We derive a hierarchy of kinetic and macroscopic models from a noisy variant of the heuristic behavioral Individual-Based Model of Ngai et al. (Disaster Med. Public Health Prep. 3:191–195, 2009) where pedestrians are supposed to have constant speeds. This IBM supposes that pedestrians seek the best compromise between navigation towards their target and collisions avoidance. We first propose a kinetic model for the probability distribution function of pedestrians. Then, we derive fluid models and propose three different closure relations. The first two closures assume that the velocity distribution function is either a Dirac delta or a von Mises-Fisher distribution respectively. The third closure results from a hydrodynamic limit associated to a Local Thermodynamical Equilibrium. We develop an analogy between this equilibrium and Nash equilibria in a game theoretic framework. In each case, we discuss the features of the models and their suitability for practical use.
Similar content being viewed by others
References
Al-nasur, S., Kashroo, P.: A microscopic-to-macroscopic crowd dynamic model. In: Proceedings of the IEEE Intelligent Transportation Systems Conference, pp. 606–611 (2006)
Aoki, I.: A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish. 48, 1081–1088 (1982)
Appert-Rolland, C., Degond, P., Motsch, S.: Two-way multi-lane traffic model for pedestrians in corridors. Netw. Heterog. Media 6, 351–381 (2011)
Aumann, R.: Existence of competitive equilibria in markets with a continuum of traders. Econometrica 32, 39–50 (1964)
Aw, A., Rascle, M.: Resurrection of second order models of traffic flow. SIAM J. Appl. Math. 60, 916–938 (2000)
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. USA 105, 1232–1237 (2008)
Barbaro, A., Degond, P.: Phase transition and diffusion among socially interacting self-propelled agent. Discrete Contin. Dyn. Syst., Ser. B (to appear). arXiv:1207.1926
Bellomo, N., Bellouquid, A.: On the modeling of crowd dynamics: looking at the beautiful shapes of swarms. Netw. Heterog. Media 6, 383–399 (2011)
Bellomo, N., Dogbé, C.: On the modelling crowd dynamics from scaling to hyperbolic macroscopic models. Math. Models Methods Appl. Sci. 18 Suppl, 1317–1345 (2008)
Bellomo, N., Dogbé, C.: On the modeling of traffic and crowds: a survey of models, speculations and perspectives. SIAM Rev. 53, 409–463 (2011)
Berres, S., Ruiz-Baier, R., Schwandt, H., Tory, E.M.: An adaptive finite-volume method for a model of two-phase pedestrian flow. Netw. Heterog. Media 6, 401–423 (2011)
Blanchet, A.: Variational methods applied to biology and economics. Dissertation for the Habilitation, University Toulouse 1 Capitole (December 2012)
Bolley, F., Cañizo, J.A., Carrillo, J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett. 25, 339–343 (2012)
Bouchut, F.: On zero pressure gas dynamics. In: Perthame, B. (ed.) Advances in Kinetic Theory and Computing, pp. 171–190. World Scientific, Singapore (1994)
Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. Partial Differ. Equ. 24, 2173–2189 (1999)
Burger, M., Markowich, P., Pietschmann, J.-F.: Continuous limit of a crowd motion and herding model: analysis and numerical simulations. Kinet. Relat. Models 4, 1025–1047 (2011)
Carlen, E., Degond, P., Wennberg, B.: Kinetic limits for pair-interaction driven master equations and biological swarm models. Math. Models Methods Appl. Sci. 23, 1339–1376 (2013)
Chertock, A., Kurganov, A., Polizzi, A., Timofeyev, I.: Pedestrian flow models with slowdown interactions. Math. Models Methods Appl. Sci. (to appear)
Colombo, R.M., Rosini, M.D.: Pedestrian flows and nonclassical shocks. Math. Methods Appl. Sci. 28, 1553–1567 (2005)
Coscia, V., Canavesio, C.: First-order macroscopic modelling of human crowd dynamics. Math. Models Methods Appl. Sci. 18 Suppl, 1217–1247 (2008)
Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)
Cristiani, E., Piccoli, B., Tosin, A.: Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9, 155–182 (2011)
Cutting, J.E., Vishton, P.M., Braren, P.A.: How we avoid collisions with stationary and moving objects. Psychol. Rev. 102, 627–651 (1995)
Degond, P.: Macroscopic limits of the Boltzmann equation: a review. In: Degond, P., et al. (eds.) Modeling and Computational Methods for Kinetic Equations, pp. 3–57. Birkhaüser, Basel (2003)
Degond, P., Appert-Rolland, C., Pettré, J., Theraulaz, G.: Macroscopic pedestrian models based on synthetic vision (submitted)
Degond, P., Frouvelle, A., Liu, J.-G.: Macroscopic limits and phase transition in a system of self-propelled particles. J. Nonlinear Sci. 23, 427–456 (2013)
Degond, P., Hua, J.: Self-organized hydrodynamics with congestion and path formation in crowds. J. Comput. Phys. 237, 299–319 (2013)
Degond, P., Hua, J., Navoret, L.: Numerical simulations of the Euler system with congestion constraint. J. Comput. Phys. 230, 8057–8088 (2011)
Degond, P., Liu, J.-G., Ringhofer, C.: A Nash equilibrium macroscopic closure for kinetic models coupled with mean-field games. arXiv:1212.6130
Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18 Suppl, 1193–1215 (2008)
Di Francesco, M., Markowich, P.A., Pietschmann, J.-F., Wolfram, M.-T.: On the Hughes’ model for pedestrian flow: the one-dimensional case. J. Differ. Equ. 250, 1334–1362 (2011)
Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria, M., Chaté, H., Theraulaz, G.: Deciphering interactions in moving animal groups. PLoS Comput. Biol. 8, e1002678 (2012)
Green, E.J., Porter, R.H.: Noncooperative collusion under imperfect price information. Econometrica 52, 87–100 (1984)
Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)
Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M.C., Manocha, D., Dubey, P.: Clearpath: highly parallel collision avoidance for multi-agent simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 177–187 (2009)
Helbing, D.: A mathematical model for the behavior of pedestrians. Behav. Sci. 36, 298–310 (1991)
Helbing, D.: A fluid dynamic model for the movement of pedestrians. Complex Syst. 6, 391–415 (1992)
Helbing, D., Molnàr, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)
Helbing, D., Molnàr, P.: Self-organization phenomena in pedestrian crowds. In: Schweitzer, F. (ed.) Self-Organization of Complex Structures: From Individual to Collective Dynamics, pp. 569–577. Gordon and Breach, London (1997)
Henderson, L.F.: On the fluid mechanics of human crowd motion. Transp. Res. 8, 509–515 (1974)
Hoogendoorn, S., Bovy, P.H.L.: Simulation of pedestrian flows by optimal control and differential games. Optim. Control Appl. Methods 24, 153–172 (2003)
Huang, W.H., Fajen, B.R., Fink, J.R., Warren, W.H.: Visual navigation and obstacle avoidance using a steering potential function. Robot. Auton. Syst. 54, 288–299 (2006)
Huang, L., Wong, S.C., Zhang, M., Shu, C.-W., Lam, W.H.K.: Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transp. Res., Part B, Methodol. 43, 127–141 (2009)
Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res., Part B, Methodol. 36, 507–535 (2002)
Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–182 (2003)
Hsu, E.P.: Stochastic Analysis on Manifolds. Graduate Series in Mathematics, vol. 38. American Mathematical Society, Providence (2002)
Jiang, Y.-q., Zhang, P., Wong, S.C., Liu, R.-x.: A higher-order macroscopic model for pedestrian flows. Physica A 389, 4623–4635 (2010)
Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)
Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., Pettré, J.: Realistic following behaviors for crowd simulation. Comput. Graph. Forum 31, 489–498 (2012)
Lighthill, M.J., Whitham, J.B.: On kinematic waves, I: flow movement in long rivers; II: a theory of traffic flow on long crowded roads. Proc. R. Soc. A 229, 1749–1766 (1955)
Maury, B., Roudneff-Chupin, A., Santambrogio, F., Venel, J.: Handling congestion in crowd motion models. Netw. Heterog. Media 6, 485–519 (2011)
Motsch, S., Moussaïd, M., Guillot, E.G., Lemercier, S., Pettré, J., Theraulaz, G., Appert-Rolland, C., Degond, P.: Dynamics of cluster formation and traffic efficiency in pedestrian crowds (submitted)
Moussaïd, M., Guillot, E.G., Moreau, M., Fehrenbach, J., Chabiron, O., Lemercier, S., Pettré, J., Appert-Rolland, C., Degond, P., Theraulaz, G.: Traffic instabilities in self-organized pedestrian crowds. PLoS Comput. Biol. 8, e1002442 (2012)
Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. USA 108, 6884–6888 (2011)
Ngai, K.M., Burkle, F.M. Jr., Hsu, A., Hsu, E.B.: Human stampedes: a systematic review of historical and peer-reviewed sources. Disaster Med. Public Health Prep. 3, 191–195 (2009)
Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics. IEICE Transp. Inf. Syst. E 87-D, 726–732 (2004)
Ondrej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. In: SIGGRAPH’10 (2010)
Paris, S., Pettré, J., Donikian, S.: Pedestrian reactive navigation for crowd simulation: a predictive approach. Eurographics 26, 665–674 (2007)
Payne, H.J.: Models of Freeway Traffic and Control. Simulation Councils Inc., La Jolla (1971)
Pettré, J., Ondřej, J., Olivier, A.-H., Cretual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: SCA ’09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 189–198 (2009)
Piccoli, B., Tosin, A.: Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn. 21, 85–117 (2009)
Reynolds, C.W.: Steering behaviors for autonomous characters. In: Proceedings of Game Developers Conference, San Jose, California, pp. 763–782 (1999)
Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)
Schmeidler, D.: Equilibrium points of nonatomic games. J. Stat. Phys. 7, 295–300 (1973)
van den Berg, J., Overmars, H.: Planning time-minimal safe paths amidst unpredictably moving obstacles. Int. J. Robot. Res. 27, 1274–1294 (2008)
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)
Warren, W.H., Fajen, B.R.: From optic flow to laws of control. In: Vaina, L.M., Beardsley, S.A., Rushton, S. (eds.) Optic Flow and Beyond, pp. 307–337. Kluwer, Dordrecht (2004)
Watson, G.S.: Distributions on the circle and sphere. J. Appl. Probab. 19, 265–280 (1982)
Acknowledgements
This work has been supported by the French ‘Agence Nationale pour la Recherche (ANR)’ in the frame of the contracts ‘Pedigree’ (ANR-08-SYSC-015-01) and ‘CBDif-Fr’ (ANR-08-BLAN-0333-01).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Degond, P., Appert-Rolland, C., Moussaïd, M. et al. A Hierarchy of Heuristic-Based Models of Crowd Dynamics. J Stat Phys 152, 1033–1068 (2013). https://doi.org/10.1007/s10955-013-0805-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-013-0805-x