Skip to main content
Log in

Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider non-reversible perturbations of reversible diffusions that do not alter the invariant distribution and we ask whether there exists an optimal perturbation such that the rate of convergence to equilibrium is maximized. We solve this problem for the case of linear drift by proving the existence of such optimal perturbations and by providing an easily implementable algorithm for constructing them. We discuss in particular the role of the prefactor in the exponential convergence estimate. Our rigorous results are illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ammari, Z., Nier, F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. Henri Poincaré 9, 1503–1574 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ammari, Z., Nier, F.: Mean field propagation of Wigner measures and general BBGKY hierarchies for general bosonic states. J. Math. Pures Appl. 95, 585–626 (2010)

    MathSciNet  Google Scholar 

  3. Arnold, A., Carlen, E., Ju, Q.: Large-time behavior of non-symmetric Fokker-Planck type equations. Commun. Stoch. Anal. 2(1), 153–175 (2008)

    MathSciNet  Google Scholar 

  4. Berestycki, H., Hamel, F., Nadirashvili, N.: Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena. Commun. Math. Phys. 253(2), 451–480 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Chopin, N., Lelièvre, T., Stoltz, G.: Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors. Stat. Comput. 22(4), 897–916 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, P., Kiselev, A., Ryzhik, L., Zlatos, A.: Diffusion and mixing in fluid flow. Ann. Math. 168(2), 643–674 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davies, E.B.: Non-self-adjoint operators and pseudospectra. In: Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon’s 60th Birthday. Proc. Sympos. Pure Math., vol. 76, pp. 141–151. Amer. Math. Soc., Providence (2007)

    Chapter  Google Scholar 

  8. Dencker, N., Sjöstrand, J., Zworski, M.: Pseudospectra of semi-classical (pseudo)differential operator. Commun. Pure Appl. Math. 57(3), 384–415 (2004)

    Article  MATH  Google Scholar 

  9. Diaconis, P.: The Markov chain Monte Carlo revolution. Bull. Am. Math. Soc. 46(2), 179–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diaconis, P., Miclo, L.: On the spectral analysis of second-order Markov chains (2012). http://hal.archives-ouvertes.fr/hal-00719047/

  11. Eckmann, J.P., Hairer, M.: Spectral properties of hypoelliptic operators. Commun. Math. Phys. 235, 233–253 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Engel, K., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equation. Graduate Texts in Mathematics, vol. 194. Springer, Berlin (2000)

    Google Scholar 

  13. Fontbona, J., Jourdain, B.: A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations (2011). http://arxiv.org/abs/1107.3300

  14. Franke, B., Hwang, C.R., Pai, H.M., Sheu, S.J.: The behavior of the spectral gap under growing drift. Trans. Am. Math. Soc. 362(3), 1325–1350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gallagher, I., Gallay, T., Nier, F.: Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator. Int. Math. Res. Not. 12, 2147–2199 (2009)

    MathSciNet  Google Scholar 

  16. Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. B 73(2), 1–37 (2011)

    MathSciNet  Google Scholar 

  17. Helffer, B.: Théorie spectrale pour des opérateurs globalement elliptiques Astérisque 112 (1984)

  18. Helffer, B., Nier, F.: Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians. Lecture Notes in Mathematics, vol. 1862. Springer, Berlin (2005)

    MATH  Google Scholar 

  19. Helffer, B., Sjöstrand, J.: From resolvent bounds to semigroup bounds. In: Proceedings of the Meeting Equations aux Dérivées Partielles, Evian (2009)

    Google Scholar 

  20. Hérau, F., Nier, F.: Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171(2), 151–218 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hitrik, M., Pravda-Starov, K.: Spectra and semigroup smoothing for non-elliptic quadratic operators. Math. Ann. 344(4), 801–846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hörmander, L.: Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z. 219(3), 413–449 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Classics in Mathematics. Springer, Berlin (2007). Pseudo-differential operators, Reprint of the 1994 edition

    MATH  Google Scholar 

  24. Hwang, C.R., Hwang-Ma, S.Y., Sheu, S.J.: Accelerating Gaussian diffusions. Ann. Appl. Probab. 3(3), 897–913 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hwang, C.R., Hwang-Ma, S.Y., Sheu, S.J.: Accelerating diffusions. Ann. Appl. Probab. 15(2), 1433–1444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lelièvre, T.: Two mathematical tools to analyze metastable stochastic processes (2012). arXiv:1201.3775

  27. Lelièvre, T., Rousset, M., Stoltz, G.: Free Energy Computations: A Mathematical Perspective. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  28. Lerner, N.: Metrics on the Phase Space and Non-selfadjoint Pseudo-differential Operators. Pseudo-differential Operators. Theory and Applications, vol. 3. Birkhäuser, Basel (2010)

    Book  MATH  Google Scholar 

  29. Lorenzi, L., Bertoldi, M.: Analytical Methods for Markov Semigroups. CRC Press, New York (2006)

    Book  Google Scholar 

  30. Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis. Mat. Contemp. 19, 1–29 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Metafune, G., Pallara, D., Priola, E.: Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures. J. Funct. Anal. 196(1), 40–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Metzner, P., Schütte, C., Vanden-Eijnden, E.: Illustration of transition path theory on a collection of simple examples. J. Chem. Phys. 125(8), 084,110 (2006)

    Article  Google Scholar 

  33. Øksendal, B.: Stochastic Differential Equations. Universitext. Springer, Berlin (2003)

    Book  Google Scholar 

  34. Ottobre, M., Pavliotis, G.A., Pravda-Starov, K.: Exponential return to equilibrium for hypoelliptic Ornstein-Uhlenbeck processes (2012, in preparation)

  35. Ottobre, M., Pavliotis, G.A., Pravda-Starov, K.: Exponential return to equilibrium for hypoelliptic quadratic systems. J. Funct. Anal. 262(9), 4000–4039 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pravda-Starov, K.: Contraction semigroups of elliptic quadratic differential operators. Math. Z. 259(2), 363–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pravda-Starov, K.: On the pseudospectrum of elliptic quadratic differential operators. Duke Math. J. 145(2), 249–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Academic Press, New York (1975)

    MATH  Google Scholar 

  39. Sjöstrand, J.: Parametrices for pseudodifferential operators with multiple characteristics. Ark. Mat. 12, 85–130 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  40. Snyders, J., Zakai, M.: On nonnegative solutions of the equation AD+DA′=−C. SIAM J. Appl. Math. 18(3), 704–714 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  41. Trefethen, L., Embree, M.: Spectra and Pseudospectra: the Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    Google Scholar 

  42. Villani, C.: Hypocoercivity. Memoirs Amer. Math. Soc. 202 (2009)

Download references

Acknowledgement

We would like to thank Matthieu Dubois for preliminary numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lelièvre.

Additional information

This work is supported by the Agence Nationale de la Recherche, under grant ANR-09-BLAN-0216-01 (MEGAS). This work was initiated while the two last authors had a INRIA-sabbatical semester and year in the INRIA-project team MICMAC. The research of GP is partially supported by the EPSRC under grants No. EP/H034587 and No. EP/J009636/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lelièvre, T., Nier, F. & Pavliotis, G.A. Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion. J Stat Phys 152, 237–274 (2013). https://doi.org/10.1007/s10955-013-0769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0769-x

Keywords

Navigation