Journal of Statistical Physics

, Volume 152, Issue 2, pp 388–398 | Cite as

Rates of Convergence for the Three State Contact Process in One Dimension

  • A. TzioufasEmail author


The basic contact process with parameter μ altered so that infections of sites that have not been previously infected occur at rate proportional to λ instead is considered. Emergence of an infinite epidemic starting out from a single infected site is not possible for μ less than the contact process’ critical value, whereas it is possible for μ greater than that value. In the former case the space and time infected regions are shown to decay exponentially; in the latter case and for λ greater than μ, the ratio of the endmost infected site’s velocity to that of the contact process is shown to be at most λ/μ.


Contact processes Immunization 


  1. 1.
    Aizenman, M., Jung, P.: On the critical behaviour at the lower phase transition of the contact process. ALEA 3, 301–320 (2007) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Andjel, E., Chabot, N., Saada, E.: A shape theorem for an epidemic model in dimension d≥3. arXiv:1110.0801 (2011)
  3. 3.
    Bezuidenhout, C., Grimmett, G.: The critical contact process dies out. Ann. Probab. 18, 1462–1482 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Durrett, R.: Lecture Notes on Particle Systems and Percolation. Wadsworth, Belmont (1988) zbMATHGoogle Scholar
  5. 5.
    Durrett, R.: Ten Lectures on Particle Systems. Lecture Notes in Math., vol. 1608. Springer, New York (1995) Google Scholar
  6. 6.
    Durrett, R., Schinazi, R.: Boundary modified contact processes. J. Theor. Probab. 13, 575–594 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Grassberger, P., Chate, H., Rousseau, G.: Spreading in media with long-time memory. Phys. Rev. E 55, 2488–2495 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    Griffeath, D.: The basic contact processes. Stoch. Process. Appl. 11(2), 151–185 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Grimmett, G.: Percolation. Springer, Berlin (1999) zbMATHGoogle Scholar
  10. 10.
    Harris, T.: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974) zbMATHCrossRefGoogle Scholar
  11. 11.
    Harris, T.: Additive set valued Markov processes and graphical methods. Ann. Probab. 6, 355–378 (1978) zbMATHCrossRefGoogle Scholar
  12. 12.
    Liggett, T.: Interacting Particle Systems. Springer, New York (1985) zbMATHCrossRefGoogle Scholar
  13. 13.
    Liggett, T.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, New York (1999) zbMATHCrossRefGoogle Scholar
  14. 14.
    Mollison, D.: Spatial contact models for ecological and epidemic spread. J. R. Stat. Soc. B 39, 283–326 (1977) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Stacey, A.: Partial immunization processes. Ann. Appl. Probab. 13, 669–690 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Tzioufas, A.: On the growth of one dimensional reverse immunization contact processes. J. Appl. Probab. 48(3), 611–623 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Tzioufas, A.: Contact processes on the integers. Ph.D. Thesis, Heriot-Watt University (2011) Google Scholar
  18. 18.
    Tzioufas, A., Zachary, S.: Unpublished manuscript (2007) Google Scholar
  19. 19.
    Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Buenos AiresArgentina

Personalised recommendations