Skip to main content
Log in

A Macroscopic System with Undamped Periodic Compressional Oscillations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A class of macroscopic systems is described which have the remarkable feature that they can sustain undamped compressional radial oscillations. They consist of an arbitrary number of particles confined by a harmonic potential and interacting among themselves through conservative forces scaling as the inverse cube of distances. The radial oscillation leads to a variation of the thermodynamic quantities characterizing the system. The system therefore does not approach equilibrium, since the (macroscopic) amplitude of the oscillation does not decrease as time goes to infinity. The oscillation is harmonic and isochronous, that is, its frequency is fixed and independent of the initial condition. These results hold independently of the dimension of the system and are also valid in the quantal context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allahverdyan, A.E., Nieuwenheuizen, Th.M.: A mathematical theorem as the basis for the second law: Thomson’s formulation applied to equilibrium. Physica A 305, 542–552 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Calogero, F.: Classical Many-Body Problems Amenable to Exact Treatments. Lecture Notes in Physics Monographs, vol. m66. Springer, Berlin (2001)

    MATH  Google Scholar 

  3. Calogero, F.: Isochronous Systems. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  4. Calogero, F., Leyvraz, F.: General technique to produce isochronous Hamiltonians. J. Phys. A, Math. Theor. 40, 12931–12944 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Calogero, F., Leyvraz, F.: Spontaneous reversal of irreversible processes in a many-body Hamiltonian evolution. New J. Phys. 10, 023042 (2008) (25 pp.)

    Article  ADS  Google Scholar 

  6. Calogero, F., Leyvraz, F.: Examples of isochronous Hamiltonians: classical and quantal treatments. J. Phys. A, Math. Theor. 41, 175202 (2008) (11 pp.)

    Article  MathSciNet  ADS  Google Scholar 

  7. Calogero, F., Leyvraz, F.: A new class of isochronous dynamical systems. J. Phys. A, Math. Theor. 41, 295101 (2008) (14 pp.)

    Article  MathSciNet  Google Scholar 

  8. Calogero, F., Leyvraz, F.: How to embed an arbitrary Hamiltonian dynamics in a superintegrable (or just integrable) Hamiltonian dynamics. J. Phys. A, Math. Theor. 42, 145202 (2009) (9 pp.)

    Article  MathSciNet  ADS  Google Scholar 

  9. Calogero, F., Leyvraz, F.: How to extend any dynamical system so that it becomes isochronous, asymptotically isochronous or multi-periodic. J. Nonlinear Math. Phys. 16, 311–338 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Calogero, F., Leyvraz, F.: Isochronous oscillators. J. Nonlinear Math. Phys. 17, 103–110 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Calogero, F., Leyvraz, F.: Solvable systems of isochronous, quasi-periodic or asymptotically isochronous nonlinear oscillators. J. Nonlinear Math. Phys. 17, 111–120 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Dorfman, J.R.: An Introduction to Chaos in Nonequilibrium Statistical Mechanics. Cambridge Lecture Notes in Physics (1999)

    Book  MATH  Google Scholar 

  13. Erdélyi, A. (ed.): Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953)

    Google Scholar 

  14. Evans, D.J., Williams, S.R., Searles, D.J.: On the entropy of relaxing deterministic systems. J. Chem. Phys. 135, 194107 (2011) (6 pp.)

    Article  ADS  Google Scholar 

  15. Gubbins, K.E.: In: Singer, K. (ed.) Statistical Mechanics, vol. 1, pp. 194–253. The Chemical Society, Burlington House, London (1972)

    Chapter  Google Scholar 

  16. Leyvraz, F., Calogero, F.: Short-time Poincaré recurrence in a broad class of many-body systems. J. Stat. Mech. Theory Exp. (2009) P02022 (14 pp.). doi:10.1088/1742-5468/2009/02/P02022

    Google Scholar 

  17. Leyvraz, F., Firpo, M.-C., Ruffo, S.: Inhomogeneous quasi-stationary states in the antiferromagnetic mean-field XY model. J. Phys. A, Math. Gen. 35, 4413 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Reid, J.C., Evans, D.J., Searles, D.J.: Communication: Beyond Boltzmann’s H-theorem: demonstration of the relaxation theorem for a non-monotonic approach to equilibrium. J. Chem. Phys. 136, 021101 (2012) (4 pp.)

    Article  ADS  Google Scholar 

  19. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  20. Tempesta, P., Turbiner, A.V., Winternitz, P.: Exact solvability of superintegrable systems. J. Math. Phys. 42, 4248–4257 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge with thanks the hospitality, extended many times, to one of us (F.C.) by the Centro Internacional de Ciencias (CIC) in Cuernavaca, and to the other one of us (F.L.) by the Physics Department of the University of Rome “La Sapienza” (including a two-week visit in May 2010, when the main results reported in this paper were obtained). This paper was completed during the Scientific Gathering on “Integrable systems—continuous and discrete—and the transition to chaos” hosted by CIC in November-December 2012. FL also wishes to acknowledge the financial support of the following projects: Proyecto de profesores asistentes of the Departamento de Física of the Universidad de los Andes as well as Projects CONACyT 44020 and UNAM–DGAPA–PAPIIT IN113311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Leyvraz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calogero, F., Leyvraz, F. A Macroscopic System with Undamped Periodic Compressional Oscillations. J Stat Phys 151, 922–937 (2013). https://doi.org/10.1007/s10955-013-0741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0741-9

Keywords

Navigation