Skip to main content
Log in

The Transition Towards Immortality: Non-linear Autocatalytic Growth of Citations to Scientific Papers

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss microscopic mechanisms of complex network growth, with the special emphasis of how these mechanisms can be evaluated from the measurements on real networks. As an example we consider the network of citations to scientific papers. Contrary to common belief that its growth is determined by the linear preferential attachment, our microscopic measurements show that it is driven by the nonlinear autocatalytic growth. This invalidates the scale-free hypothesis for the citation network. The nonlinearity is responsible for a dramatic dynamical phase transition: while the citation lifetime of majority of papers is 6–10 years, the highly-cited papers have practically infinite lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Consider a cohort of papers published in the same year. After a couple of years, when the general interest to this cohort already decayed, the annual number of citations gained by previously uncited papers is either 0 or 1. Therefore, the mean annual number of additional citations gained by previously uncited papers is \(\overline{\Delta k_{i}}\approx\Delta N_{0}/N_{0}\) where N 0 is the number of uncited papers and ΔN 0=N 0(t)−N 0(t+1) is the number of uncited papers that got their first citation during recent year t+1. If the total number of papers in the dataset is N, then \(\overline{\Delta k_{i}}\approx\Delta P_{0}/P_{0}\) where P 0=N 0/N is the fraction of uncited papers.

References

  1. de Solla Price, D.: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27, 292 (1976)

    Article  Google Scholar 

  2. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Redner, S.: Citation statistics from 110 years of physical review. Phys. Today 58, 49 (2005)

    Article  Google Scholar 

  5. Stringer, M.J., Sales-Pardo, M., Amaral, L.A.N.: Effectiveness of journal ranking schemes as a tool for locating information. PLoS ONE 3, e1683 (2008)

    Article  ADS  Google Scholar 

  6. Radicchi, F., Fortunato, S., Castellano, C.: Universality of citation distributions: toward an objective measure of scientific impact. Proc. Natl. Acad. Sci. USA 105, 17268 (2008)

    Article  ADS  Google Scholar 

  7. Petersen, A.M., Wang, F., Stanley, H.E.: Methods for measuring the citations and productivity of scientists across time and discipline. Phys. Rev. E 81, 036114 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  8. Golosovsky, M., Solomon, S.: Runaway events dominate the heavy tail of citation distributions. Eur. Phys. J. 205, 303 (2012)

    Google Scholar 

  9. Krapivsky, P.L., Redner, S.: Organization of growing random networks. Phys. Rev. E 63, 066123 (2001)

    Article  ADS  Google Scholar 

  10. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2002)

    Article  ADS  Google Scholar 

  11. Malcai, O., Biham, O., Solomon, S.: Power-law distributions and Lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements. Phys. Rev. E 60, 1299 (1998)

    Article  ADS  Google Scholar 

  12. Blank, A., Solomon, S.: Power laws in cities population, financial markets and Internet sites (scaling in systems with a variable number of components). Physica A 287, 279 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  13. Jeong, H., Neda, Z., Barabasi, A.L.: Measuring preferential attachment in evolving networks. Europhys. Lett. 61, 567 (2003)

    Article  ADS  Google Scholar 

  14. Eom, Y.-H., Jeon, C., Jeong, H., Kahng, B.: Evolution of weighted scale-free networks in empirical data. Phys. Rev. E 77, 056105 (2008)

    Article  ADS  Google Scholar 

  15. Eom, Y.-H., Fortunato, S.: Characterizing and modeling citation dynamics. PLoS ONE 6, e24926 (2011)

    Article  ADS  Google Scholar 

  16. Valverde, S., Solé, R.V., Bedau, M.A., Packard, N.: Topology and evolution of technology innovation networks. Phys. Rev. E 76, 056118 (2007)

    Article  ADS  Google Scholar 

  17. Csardi, G., Strandburg, K.J., Zalanyi, L., Tobochnik, J., Erdi, P.: Modeling innovation by a kinetic description of the patent citation system. Physica A 374, 783 (2007)

    Article  ADS  Google Scholar 

  18. Wang, M., Yu, G., Yu, D.: Measuring the preferential attachment mechanism in citation networks. Physica A 387, 4692 (2008)

    Article  ADS  Google Scholar 

  19. Tomassini, M., Luthi, L.: Empirical analysis of the evolution of a scientific collaboration network. Physica A 385, 750 (2007)

    Article  ADS  Google Scholar 

  20. Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001)

    Article  ADS  Google Scholar 

  21. Capocci, A., Servedio, V.D.P., Colaiori, F., Buriol, L.S., Donato, D., Leonardi, S., Caldarelli, G.: Preferential attachment in the growth of social networks: the Internet encyclopedia Wikipedia. Phys. Rev. E 74, 036116 (2006)

    Article  ADS  Google Scholar 

  22. Herdagdelen, A., Aygun, E., Bingol, H.: A formal treatment of generalized preferential attachment and its empirical validation. Europhys. Lett. 78, 60007 (2007)

    Article  ADS  Google Scholar 

  23. Eisenberg, E., Levanon, E.Y.: Preferential attachment in the protein network evolution. Phys. Rev. Lett. 91, 138701 (2003)

    Article  ADS  Google Scholar 

  24. Sheridan, P., Yagahara, Y., Shimodaira, H.: Measuring preferential attachment in growing networks with missing-timelines using Markov chain Monte Carlo. Physica A 391, 5031 (2012)

    Article  ADS  Google Scholar 

  25. Goffman, W., Newill, V.A.: Generalization of epidemic theory: an application to the transmission of ideas. Nature 4953, 225 (1964)

    Article  Google Scholar 

  26. Bettencourt, L.M.A., Cintron-Arias, A., Kaiser, D.I., Castillo-Chavez, C.: The power of a good idea: quantitative modeling of the spread of ideas from epidemiological models. Physica A 364, 513 (2006)

    Article  ADS  Google Scholar 

  27. Krapivsky, P.L., Redner, S.: Network growth by copying. Phys. Rev. E 71, 036118 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  28. Simkin, M.V., Roychowdhury, V.P.: A mathematical theory of citing. J. Am. Soc. Inf. Sci. Technol. 58, 1661 (2007)

    Article  Google Scholar 

  29. Golosovsky, M., Solomon, S.: Stochastic dynamical model of a growing citation network based on a self-exciting point process. Phys. Rev. Lett. 109, 098701 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Filippo Radicchi, Alexander Petersen, Oleg Yordanov, and Andrea Scharnhorst for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Golosovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golosovsky, M., Solomon, S. The Transition Towards Immortality: Non-linear Autocatalytic Growth of Citations to Scientific Papers. J Stat Phys 151, 340–354 (2013). https://doi.org/10.1007/s10955-013-0714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0714-z

Keywords

Navigation