Journal of Statistical Physics

, Volume 151, Issue 1–2, pp 203–217 | Cite as

Decision Accuracy and the Role of Spatial Interaction in Opinion Dynamics

  • Colin J. Torney
  • Simon A. Levin
  • Iain D. Couzin
Article

Abstract

The opinions and actions of individuals within interacting groups are frequently determined by both social and personal information. When sociality (or the pressure to conform) is strong and individual preferences are weak, groups will remain cohesive until a consensus decision is reached. When group decisions are subject to a bias, representing for example private information known by some members of the population or imperfect information known by all, then the accuracy achieved for a fixed level of bias will increase with population size. In this work we determine how the scaling between accuracy and group size can be related to the microscopic properties of the decision-making process. By simulating a spatial model of opinion dynamics we show that the relationship between the instantaneous fraction of leaders in the population (L), system size (N), and accuracy depends on the frequency of individual opinion switches and the level of population viscosity. When social mixing is slow, and individual opinion changes are frequent, accuracy is determined by the absolute number of informed individuals. As mixing rates increase, or the rate of opinion updates decrease, a transition occurs to a regime where accuracy is determined by the value of \(L\sqrt{ N}\). We investigate the transition between different scaling regimes analytically by examining a well-mixed limit.

Keywords

Opinion dynamics Collective behavior 

References

  1. 1.
    Torney, C.J., Levin, S.A., Couzin, I.D.: Proc. Natl. Acad. Sci. 107, 20394 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    Young, H.P.: Econometrica 61(1), 57–84 (1993) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes vol. 324. Springer, Berlin (1999) MATHCrossRefGoogle Scholar
  4. 4.
    Castellano, C., Fortunato, S., Loreto, V.: Rev. Mod. Phys. 81, 591 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Phys. Rev. Lett. 75, 1226 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    Buhl, J., et al.: Science 312, 1402 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    Galam, S.: Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena. Springer, Berlin (2012) Google Scholar
  8. 8.
    Anderson, P.W.: Science 177, 393 (1972) ADSCrossRefGoogle Scholar
  9. 9.
    Mobilia, M.: Phys. Rev. Lett. 91, 028701 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    Sood, V., Redner, S.: Phys. Rev. Lett. 94, 178701 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    Condorcet, M.: In: Baker, K.M. (ed.) Reprinted in Condorcet: Selected Writings, vol. 33 (1976) Google Scholar
  12. 12.
    Galton, F.: Nature 75, 450 (1907) ADSCrossRefGoogle Scholar
  13. 13.
    Grünbaum, D.: Evol. Ecol. 12, 503 (1998) CrossRefGoogle Scholar
  14. 14.
    Simons, A.: Trends Ecol. Evol. 19, 453 (2004) CrossRefGoogle Scholar
  15. 15.
    Surowiecki, J.: The Wisdom of Crowds. Anchor, New York (2005) Google Scholar
  16. 16.
    Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Nature 433, 513 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    Torney, C.J., Neufeld, Z., Couzin, I.D.: Proc. Natl. Acad. Sci. 106, 22055 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    Berdahl, A., Torney, C.J., Ioannou, C.C., Faria, J., Couzin, I.D.: Science 339(6119), 574–576 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    Couzin, I.D., et al.: Science 334, 1578 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    Xie, J., et al.: Phys. Rev. E 84, 011130 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    Huse, G., Railsback, S., Ferono, A.: J. Fish Biol. 60(3), 571–582 (2002) CrossRefGoogle Scholar
  22. 22.
    Cavagna, A., Queiros, S., Giardina, I., Stefanini, F., Viale, M.: arXiv:1206.4434 (2012)
  23. 23.
    Neufeld, Z., López, C., Haynes, P.H.: Phys. Rev. Lett. 82, 2606 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    Hoel, P., Port, S., Stone, C.: Introduction to Stochastic Processes. Houghton Mifflin, Boston (1972) MATHGoogle Scholar
  25. 25.
    Doering, C.R., Sargsyan, K.V., Sander, L.M.: Multiscale Model. Simul. 3, 283–299 (2006) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Feller, W.: An Introduction to Probability Theory and Its Applications vol. 2. Wiley, New York (2008) Google Scholar
  27. 27.
    Saavedra, S., Hagerty, K., Uzzi, B.: Proc. Natl. Acad. Sci. 108, 5296 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    Banerjee, A.V.: Q. J. Econ. 107, 797 (1992) CrossRefGoogle Scholar
  29. 29.
    Arthur, W.B.: Econ. J. 99, 116 (1989) CrossRefGoogle Scholar
  30. 30.
    Bikhchandani, S., Hirshleifer, D., Welch, I.: J. Polit. Econ. 100, 992–1026 (1992). http://www.jstor.org/stable/2138632 CrossRefGoogle Scholar
  31. 31.
    Lohmann, S.: World Polit. 47, 42 (1994) CrossRefGoogle Scholar
  32. 32.
    Granovetter, M.: Am. J. Sociol. 83(6), 1420–1443 (1978) CrossRefGoogle Scholar
  33. 33.
    Young, H.: Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton University Press, Princeton (2001) Google Scholar
  34. 34.
    Dall, S., Giraldeau, L., Olsson, O., McNamara, J., Stephens, D.: Trends Ecol. Evol. 20, 187 (2005) CrossRefGoogle Scholar
  35. 35.
    Salganik, M., Dodds, P., Watts, D.: Science 311, 854 (2006) ADSCrossRefGoogle Scholar
  36. 36.
    Faria, J.J., Krause, S., Krause, J.: Behav. Ecol. 21, 1236 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Colin J. Torney
    • 1
  • Simon A. Levin
    • 1
  • Iain D. Couzin
    • 1
  1. 1.Department of Ecology & Evolutionary BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations