Abstract
The modeling of human mobility is adopting new directions due to the increasing availability of big data sources from human activity. These sources enclose digital information about daily visited locations of a large number of individuals. Examples of these data include: mobile phone calls, credit card transactions, bank notes dispersal, check-ins in internet applications, among several others. In this study, we consider the data obtained from smart subway fare card transactions to characterize and model urban mobility patterns. We present a simple mobility model for predicting peoples’ visited locations using the popularity of places in the city as an interaction parameter between different individuals. This ingredient is sufficient to reproduce several characteristics of the observed travel behavior such as: the number of trips between different locations in the city, the exploration of new places and the frequency of individual visits of a particular location. Moreover, we indicate the limitations of the proposed model and discuss open questions in the current state of the art statistical models of human mobility.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kitamura, R., Chen, C., Pendyala, R.M., Narayaran, R.: Transportation 27(1), 25–51 (2000)
Bhat, C.R., Koppelman, F.S.: Activity-based modeling for travel demand. In: Hall, R.W. (ed.) Handbook of Transportation Science (1999)
Ukkusuri, S.V., Tom, V.M., Waller, S.T.: Comput.-Aided Civ. Infrastruct. Eng. 22(1), 9–21 (2007)
Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Nature 429, 180–184 (2004)
Hufnagel, L., Brockmann, D., Geisel, T.: Proc. Natl. Acad. Sci. 101, 15124–15129 (2004)
Colizza, V., Barrat, A., Barthélémy, M., Valleron, A.-J., Vespignani, A.: PLoS Med. 4, 95–110 (2007)
Kleinberg, J.: Nature 449, 287–288 (2007)
Nicolaides, C., Cueto-Felgueroso, L., González, M.C., Juanes, R.: PLoS ONE 7(7), e40961 (2012)
Hanson, S.: Proc. Natl. Acad. Sci. 102, 15301–15306 (2005)
Rhee, I., Shin, M., Hong, S., Lee, K., Chong, S.: In: Proceedings of INFOCOM, Phoenix, USA (2008)
Hanson, S., Huff, J.: Transportation 15, 111–135 (1988)
Vilhelmson, B.: GeoJournal 48(3), 177–185 (1999)
Ewing, R., Cervero, R.: Transp. Res. Rec. 1780, 87–113 (2001)
Schlich, R., Axhausen, K.: Transportation 30(1), 13–36 (2003)
Maat, K., van Wee, B., Stead, D.: Environ. Plan. B, Plan. Des. 32, 33–46 (2005)
Bagchi, M., White, P.R.: Transp. Policy 12, 464–474 (2005)
Seaborn, C., Attanucci, J., Wilson, N.H.M.: Transp. Res. Rec. 2121, 55–62 (2009)
Roth, C., Kang, S.M., Batty, M., Barthélémy, M.: PLoS ONE 6(1), e15923 (2011)
Ben-Akiva, M., Bierlaire, M.: Discrete choice methods and their applications to short term travel decisions. In: Hall, R.W. (ed.) Handbook of Transportation Science (1999)
Cetin, N., Nagel, K., Raney, B., Voellmy, A.: Comput. Phys. Commun. 147(1–2), 559–564 (2002)
Axhausen, K.W.: Environ. Plan. B, Plan. Des. 35(6), 981–996 (2008)
Newman, M.E.J.: Am. J. Phys. 79, 800–810 (2011)
Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E.: Nature 381, 413–415 (1996)
Edwards, A.M., Phillips, R.A., Watkins, N.W., Freeman, M.P., Murphy, E.J., Afanasyev, V., Buldyrev, S.V., da Luz, M.G.E., Raposo, E.P., Stanley, H.E., Viswanathan, G.M.: Nature 449, 1044–1048 (2007)
Brockmann, D., Hufnagel, L., Geisel, T.: Nature 439, 462–465 (2006)
González, M.C., Hidalgo, A.C., Barabási, A.-L.: Nature 453, 779–782 (2008)
Barabási, A.-L.: Nature 435, 207–211 (2005)
Candia, J., González, M.C., Wang, P., Schoenharl, T., Madey, G., Barabási, A.-L.: J. Phys. A, Math. Theor. 41, 224015 (2008)
Oyster Factsheet, http://www.tfl.gov.uk/assets/downloads/corporate/oyster-factsheet.pdf (2010). (Accessed November 1, 2011)
Joly, I.: Travel time budget-decomposition of the worldwide mean. In: Conference of the International Association of Time-Use Research, 27–29 October, Rome, Italy (2004)
Song, C., Koren, T., Wang, P., Barabási, A.-L.: Nat. Phys. 6, 818–823 (2010)
Balcan, D., Colizza, V., Goncalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Proc. Natl. Acad. Sci. 106, 21484–21489 (2009)
Acknowledgements
The Oyster card anonymous data was collected by Transport for London (TfL) for operational purposes, and we are grateful for their permission to use it in this paper. We also thank Prof. Nigel Wilson and Michael Frumin of MIT Transit Research Group for providing us the data; Prof. Chris Magee and Dr. Daniel Whitney for giving useful comments in the initial stage of this project.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hasan, S., Schneider, C.M., Ukkusuri, S.V. et al. Spatiotemporal Patterns of Urban Human Mobility. J Stat Phys 151, 304–318 (2013). https://doi.org/10.1007/s10955-012-0645-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-012-0645-0