Skip to main content

Advertisement

Log in

Spatiotemporal Patterns of Urban Human Mobility

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The modeling of human mobility is adopting new directions due to the increasing availability of big data sources from human activity. These sources enclose digital information about daily visited locations of a large number of individuals. Examples of these data include: mobile phone calls, credit card transactions, bank notes dispersal, check-ins in internet applications, among several others. In this study, we consider the data obtained from smart subway fare card transactions to characterize and model urban mobility patterns. We present a simple mobility model for predicting peoples’ visited locations using the popularity of places in the city as an interaction parameter between different individuals. This ingredient is sufficient to reproduce several characteristics of the observed travel behavior such as: the number of trips between different locations in the city, the exploration of new places and the frequency of individual visits of a particular location. Moreover, we indicate the limitations of the proposed model and discuss open questions in the current state of the art statistical models of human mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kitamura, R., Chen, C., Pendyala, R.M., Narayaran, R.: Transportation 27(1), 25–51 (2000)

    Article  Google Scholar 

  2. Bhat, C.R., Koppelman, F.S.: Activity-based modeling for travel demand. In: Hall, R.W. (ed.) Handbook of Transportation Science (1999)

  3. Ukkusuri, S.V., Tom, V.M., Waller, S.T.: Comput.-Aided Civ. Infrastruct. Eng. 22(1), 9–21 (2007)

    Article  Google Scholar 

  4. Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Nature 429, 180–184 (2004)

    Article  ADS  Google Scholar 

  5. Hufnagel, L., Brockmann, D., Geisel, T.: Proc. Natl. Acad. Sci. 101, 15124–15129 (2004)

    Article  ADS  Google Scholar 

  6. Colizza, V., Barrat, A., Barthélémy, M., Valleron, A.-J., Vespignani, A.: PLoS Med. 4, 95–110 (2007)

    Article  Google Scholar 

  7. Kleinberg, J.: Nature 449, 287–288 (2007)

    Article  ADS  Google Scholar 

  8. Nicolaides, C., Cueto-Felgueroso, L., González, M.C., Juanes, R.: PLoS ONE 7(7), e40961 (2012)

    Article  ADS  Google Scholar 

  9. Hanson, S.: Proc. Natl. Acad. Sci. 102, 15301–15306 (2005)

    Article  ADS  Google Scholar 

  10. Rhee, I., Shin, M., Hong, S., Lee, K., Chong, S.: In: Proceedings of INFOCOM, Phoenix, USA (2008)

    Google Scholar 

  11. Hanson, S., Huff, J.: Transportation 15, 111–135 (1988)

    Google Scholar 

  12. Vilhelmson, B.: GeoJournal 48(3), 177–185 (1999)

    Article  Google Scholar 

  13. Ewing, R., Cervero, R.: Transp. Res. Rec. 1780, 87–113 (2001)

    Article  Google Scholar 

  14. Schlich, R., Axhausen, K.: Transportation 30(1), 13–36 (2003)

    Article  Google Scholar 

  15. Maat, K., van Wee, B., Stead, D.: Environ. Plan. B, Plan. Des. 32, 33–46 (2005)

    Article  Google Scholar 

  16. Bagchi, M., White, P.R.: Transp. Policy 12, 464–474 (2005)

    Article  Google Scholar 

  17. Seaborn, C., Attanucci, J., Wilson, N.H.M.: Transp. Res. Rec. 2121, 55–62 (2009)

    Article  Google Scholar 

  18. Roth, C., Kang, S.M., Batty, M., Barthélémy, M.: PLoS ONE 6(1), e15923 (2011)

    Article  Google Scholar 

  19. Ben-Akiva, M., Bierlaire, M.: Discrete choice methods and their applications to short term travel decisions. In: Hall, R.W. (ed.) Handbook of Transportation Science (1999)

  20. Cetin, N., Nagel, K., Raney, B., Voellmy, A.: Comput. Phys. Commun. 147(1–2), 559–564 (2002)

    Article  ADS  MATH  Google Scholar 

  21. Axhausen, K.W.: Environ. Plan. B, Plan. Des. 35(6), 981–996 (2008)

    Article  Google Scholar 

  22. Newman, M.E.J.: Am. J. Phys. 79, 800–810 (2011)

    Article  ADS  Google Scholar 

  23. Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E.: Nature 381, 413–415 (1996)

    Article  ADS  Google Scholar 

  24. Edwards, A.M., Phillips, R.A., Watkins, N.W., Freeman, M.P., Murphy, E.J., Afanasyev, V., Buldyrev, S.V., da Luz, M.G.E., Raposo, E.P., Stanley, H.E., Viswanathan, G.M.: Nature 449, 1044–1048 (2007)

    Article  ADS  Google Scholar 

  25. Brockmann, D., Hufnagel, L., Geisel, T.: Nature 439, 462–465 (2006)

    Article  ADS  Google Scholar 

  26. González, M.C., Hidalgo, A.C., Barabási, A.-L.: Nature 453, 779–782 (2008)

    Article  ADS  Google Scholar 

  27. Barabási, A.-L.: Nature 435, 207–211 (2005)

    Article  ADS  Google Scholar 

  28. Candia, J., González, M.C., Wang, P., Schoenharl, T., Madey, G., Barabási, A.-L.: J. Phys. A, Math. Theor. 41, 224015 (2008)

    Article  ADS  Google Scholar 

  29. Oyster Factsheet, http://www.tfl.gov.uk/assets/downloads/corporate/oyster-factsheet.pdf (2010). (Accessed November 1, 2011)

  30. Joly, I.: Travel time budget-decomposition of the worldwide mean. In: Conference of the International Association of Time-Use Research, 27–29 October, Rome, Italy (2004)

  31. Song, C., Koren, T., Wang, P., Barabási, A.-L.: Nat. Phys. 6, 818–823 (2010)

    Article  Google Scholar 

  32. Balcan, D., Colizza, V., Goncalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Proc. Natl. Acad. Sci. 106, 21484–21489 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Oyster card anonymous data was collected by Transport for London (TfL) for operational purposes, and we are grateful for their permission to use it in this paper. We also thank Prof. Nigel Wilson and Michael Frumin of MIT Transit Research Group for providing us the data; Prof. Chris Magee and Dr. Daniel Whitney for giving useful comments in the initial stage of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta C. González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, S., Schneider, C.M., Ukkusuri, S.V. et al. Spatiotemporal Patterns of Urban Human Mobility. J Stat Phys 151, 304–318 (2013). https://doi.org/10.1007/s10955-012-0645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0645-0

Keywords

Navigation