Skip to main content
Log in

New Two-Dimensional Ice Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper presents a new approach for enumerating all hydrogen bond arrangements of ice-like systems with periodic boundary conditions. It is founded on a topological procedure for the dimensional reduction and a new variant of the transfer matrix method based on small conditional transfer matrices. We consider a couple of new two-dimensional ice models on very unusual lattices. One of them is the twisted square ice model with crossing H-bonds. The other is the digonal-hexagonal model with double H-bonds. In spite of their uncommonness, these models are quite realistic, because from the standpoint of combinatorics and topology they are equivalent to the layers of usual hexagonal ice Ih under periodic boundary conditions in one of the directions. The exact proton configuration statistics for a number of 2D-expanded unit cells of hexagonal ice Ih and the residual entropy of the new ice models in the large system limit are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bernal, J.D., Fowler, R.H.: A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933)

    Article  ADS  Google Scholar 

  2. Delgado Friedrichs, O., Dress, A.W.M., Huson, D.H., Klinowski, J., Mackay, A.L.: Systematic enumeration of crystalline networks. Nature 400, 644–647 (1999)

    Article  ADS  Google Scholar 

  3. Feibelman, P.J., Alavi, A.: Entropy of H2O wetting layers. J. Phys. Chem. B 108, 14362–14367 (2004)

    Article  Google Scholar 

  4. Hirsch, T.K., Ojamäe, L.: Quantum-chemical and force-field investigations of ice Ih: computation of proton-ordered structures and prediction of their lattice energies. J. Phys. Chem. B 108, 15856–15864 (2004)

    Article  Google Scholar 

  5. Johnston, J.C., Kastelowitz, N., Molinero, V.: Liquid to quasicrystal transition in bilayer water. J. Chem. Phys. 133, 154516 (2010)

    Article  ADS  Google Scholar 

  6. Kastelowitz, N., Johnston, J.C., Molinero, V.: The anomalously high melting temperature of bilayer ice. J. Chem. Phys. 132, 124511 (2010)

    Article  ADS  Google Scholar 

  7. Kimmel, G.A., Matthiesen, J., Baer, M., Mundy, C.J., Petrik, N.G., Smith, R.S., Dohnalek, Z., Kay, B.D.: No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 131, 12838–12844 (2009)

    Article  Google Scholar 

  8. Kirov, M.V.: Residual entropy of ice nanotubes and ice layers. Physica A (2012). doi:10.1016/j.physa.2012.10.041

    Google Scholar 

  9. Kirov, M.V.: Residual entropy of polyhedral water clusters. Exact relations. J. Struct. Chem. 35, 126–128 (1994)

    Article  Google Scholar 

  10. Kirov, M.V.: The transfer-matrix and max-plus algebra method for global combinatorial optimization: application to cyclic and polyhedral water clusters. Physica A 388, 1431–1445 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. Kirov, M.V., Fanourgakis, G.S., Xantheas, S.S.: Identifying the most stable networks in polyhedral water clusters. Chem. Phys. Lett. 461, 180–188 (2008)

    Article  ADS  Google Scholar 

  12. Koga, K., Gao, G.T., Tanaka, H., Zeng, X.C.: Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412, 802–805 (2001)

    Article  ADS  Google Scholar 

  13. Koga, K., Zeng, X.C., Tanaka, H.: Freezing of confined water: a bilayer ice phase in hydrophobic nanopores. Phys. Rev. Lett. 79, 5262 (1997)

    Article  ADS  Google Scholar 

  14. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60, 252–262 (1941)

    Article  MathSciNet  ADS  Google Scholar 

  15. Kuo, J.-L., Coe, J.V., Singer, S.J., Band, Y.B., Ojamäe, L.: On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. J. Chem. Phys. 114, 2527–2540 (2001)

    Article  ADS  Google Scholar 

  16. Kuo, J.-L.: The low-temperature proton-ordered phases of ice predicted by ab initio method. Phys. Chem. Chem. Phys. 7, 3733–3737 (2005)

    Article  Google Scholar 

  17. Lekner, J.: Energetics of hydrogen ordering in ice. Physica B 252, 149–159 (1998)

    Article  ADS  Google Scholar 

  18. Lieb, E.H.: The residual entropy of square ice. Phys. Rev. 162, 162–172 (1967)

    Article  ADS  Google Scholar 

  19. Lin, K.Y., Tang, D.L.: Residual entropy of two-dimensional ice on a Kagome lattice. J. Phys. A 9, 1101–1107 (1976)

    Article  ADS  Google Scholar 

  20. Lin, K.Y., Ma, W.J.: Residual entropy of two-dimensional ice on a ruby lattice. J. Phys. A 16, 2515–2519 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  21. Morrison, I., Li, J.C., Jenkins, S., Xantheas, S.S., Payne, M.C.: Total energy studies of the static and dynamical properties of ice Ih and exotic high pressure phases. J. Phys. Chem. B 101, 6146–6150 (1997)

    Article  Google Scholar 

  22. Nagle, J.F.: Lattice statistics of hydrogen bonded crystals I. The residual entropy of ice. J. Math. Phys. 7, 1484–1491 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  23. Onsager, L., Dupuis, M.: Rend. Scu. Int. Fis. “Enrico Fermi” 10, 294 (1960)

    Google Scholar 

  24. Pauling, L.: The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)

    Article  Google Scholar 

  25. Petrenko, V.F., Whitworth, R.W.: Physics of Ice. Oxford University Press, Oxford (1999)

    Google Scholar 

  26. Sunada, T.: Lecture on topological crystallography. Jpn. J. Math. 7, 1–39 (2012)

    Article  MathSciNet  Google Scholar 

  27. Tokmachev, A.M., Dronskowski, R.: Hydrogen-bond networks in finite ice nanotubes. J. Comput. Chem. 32, 99–105 (2011)

    Article  Google Scholar 

  28. Tokmachev, A.M., Dronskowski, R.: Residual entropy of quasi-one-dimensional water systems. J. Phys. A, Math. Theor. 43, 325001 (2010)

    Article  Google Scholar 

  29. Yoo, S., Kirov, M.V., Xantheas, S.S.: Low-energy networks of the T-cage (H2O)24 cluster and their use in constructing periodic unit cells of the structure I (sI) hydrate lattice. J. Am. Chem. Soc. 131, 7564–7566 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Sotiris S. Xantheas of Pacific Northwest National Laboratory for assistance in the preparation of the manuscript. This study was supported in part by Interdisciplinary integration projects of Siberian Branch of the Russian Academy of Sciences, No 144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Kirov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirov, M.V. New Two-Dimensional Ice Models. J Stat Phys 149, 865–877 (2012). https://doi.org/10.1007/s10955-012-0632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0632-5

Keywords

Navigation