Skip to main content
Log in

Phase Transition for the Ising Model on the Critical Lorentzian Triangulation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The ferromagnetic Ising model without external field on an infinite Lorentzian triangulation sampled from the uniform distribution is considered. We prove uniqueness of the Gibbs measure in the high temperature region and coexistence of at least two Gibbs measures at low temperature. The proofs are based on the disagreement percolation method and on a variant of the Peierls contour method. The critical temperature is shown to be constant a.s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We require that the embedding maps v 0 to the root vertex of T, and sends horizontal/vertical edges of Γ to edges of the same type in T.

References

  1. Athreya, K.B., Ney, P.E.: Branching Processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. Springer, New York (1972). MR 0373040 (51 #9242)

    Book  MATH  Google Scholar 

  2. Bassalygo, L.A., Dobrushin, R.L.: Uniqueness of a Gibbs field with a random potential—an elementary approach. Teor. Veroâtn. Ee Primen. 31(4), 651–670 (1986). MR 881577 (88i:60160)

    MathSciNet  Google Scholar 

  3. Benedetti, D., Loll, R.: Quantum gravity and matter: counting graphs on causal dynamical triangulations. Gen. Relativ. Gravit. 39, 863–898 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Geiger, J.: Elementary new proofs of classical limit theorems for Galton-Watson processes. J. Appl. Probab. 36(2), 301–309 (1999). MR 1724856 (2001k:60119)

    Article  MathSciNet  MATH  Google Scholar 

  5. Georgii, H.-O.: Gibbs Measures and Phase Transitions, 2nd edn. De Gruyter Studies in Mathematics, vol. 9. de Gruyter, Berlin (2011). MR 2807681 (2012d:82015)

    Book  MATH  Google Scholar 

  6. Georgii, H.-O., Häggström, O., Maes, C.: The Random Geometry of Equilibrium Phases. Phase Transitions and Critical Phenomena, vol. 18, pp. 1–142. Academic Press, San Diego (2001). MR 2014387 (2004h:82022)

    Google Scholar 

  7. Kazakov, V.A.: Ising model on a dynamical planar random lattice: exact solution. Phys. Lett. A 119, 140–144 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  8. Loll, R., Ambjorn, J., Jurkiewicz, J.: The universe from scratch. Contemp. Phys. 47, 103–117 (2006)

    Article  ADS  Google Scholar 

  9. Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of LlogL criteria for mean behavior of branching processes. Ann. Probab. 23(3), 1125–1138 (1995). MR 1349164 (96m:60194)

    Article  MathSciNet  MATH  Google Scholar 

  10. Malyshev, V., Yambartsev, A., Zamyatin, A.: Two-dimensional Lorentzian models. Mosc. Math. J. 1(3), 439–456 (2001). Also p. 472. MR 1877603 (2002j:82055)

    MathSciNet  MATH  Google Scholar 

  11. Sisko, V., Yambartsev, A., Zohren, S.: A note on weak convergence results for uniform infinite causal triangulations. Markov Process. Relat. Fields (2011, submitted)

  12. van den Berg, J., Maes, C.: Disagreement percolation in the study of Markov fields. Ann. Probab. 22(2), 749–763 (1994). MR 1288130 (95h:60154)

    Article  MathSciNet  MATH  Google Scholar 

  13. Weitz, D.: Combinatorial criteria for uniqueness of Gibbs measures. Random Struct. Algorithms 27(4), 445–475 (2005). MR 2178257 (2006k:82036)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of M.K. is partially supported by Projet du conseil scientifique BQR 2007, Unité Mixte de Recherche UMR7502, IAEM 0039. A.Y. thanks National Council for Scientific and Technological Development (CNPq), Brazil, grants “Rede Matemática Brasil–França” (306092/2007-7) and “Edital Universal 2006” (471925/2006-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Yambartsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krikun, M., Yambartsev, A. Phase Transition for the Ising Model on the Critical Lorentzian Triangulation. J Stat Phys 148, 422–439 (2012). https://doi.org/10.1007/s10955-012-0548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0548-0

Keywords

Navigation