Skip to main content
Log in

Lyapunov Functions and Cone Families

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We describe systematically the relation between Lyapunov functions and nonvanishing Lyapunov exponents, both for maps and flows. This includes a brief survey of the existing results in the area. In particular, we consider separately the cases of nonpositive and arbitrary Lyapunov functions, thus yielding optimal criteria for negativity and positivity of the Lyapunov exponents of linear cocycles over measure-preserving transformations. Moreover, we describe converse results of these criteria with the explicit construction of eventually strict Lyapunov functions for any map or flow with nonzero Lyapunov exponents. We also construct examples showing that in general the existence of an eventually strict invariant cone family does not imply the existence of an eventually strict Lyapunov function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Kac’s lemma says that if f:XX is a measurable transformation preserving a probability measure μ in X and EX is a measurable set, then the function \(\bar{n}\) in (6) is μ-integrable and \(\int_{E} \bar{n} \, d \mu=\mu (\bigcup_{n \geq 0} f^{-n} E)\) (see for example [16]).

References

  1. Alekseev, V.: Quasirandom dynamical systems. I. Quasirandom diffeomorphisms. Math. USSR Sb. 5, 73–128 (1968)

    Article  MATH  Google Scholar 

  2. Alekseev, V.: Quasirandom dynamical systems. II. One-dimensional nonlinear vibrations in a periodically perturbed field. Math. USSR Sb. 6, 505–560 (1968)

    Article  MATH  Google Scholar 

  3. Alekseev, V.: Quasirandom dynamical systems. III. Quasirandom vibrations of one-dimensional oscillators. Math. USSR Sb. 7, 1–43 (1969)

    Article  MATH  Google Scholar 

  4. Barreira, L., Pesin, Ya.: Smooth ergodic theory and nonuniformly hyperbolic dynamics, with an appendix by O. Sarig. In: Hasselblatt, B., Katok, A. (eds.) Handbook of Dynamical Systems 1B, pp. 57–263. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  5. Barreira, L., Pesin, Ya.: Nonuniform Hyperbolicity. Encyclopedia of Math. and Its Appl., vol. 115. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  6. Barreira, L., Valls, C.: Nonuniform exponential contractions and Lyapunov sequences. J. Differ. Equ. 246, 4743–4771 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bunimovich, L., Sinai, Ya.: On a fundamental theorem in the theory of dispersing billiards. Math. USSR Sb. 19, 407–423 (1974)

    Article  MATH  Google Scholar 

  8. Burns, K., Dolgopyat, D., Pesin, Ya.: Partial hyperbolicity, Lyapunov exponents and stable ergodicity. J. Stat. Phys. 108, 927–942 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chernov, N.: Decay of correlations and dispersing billiards. J. Stat. Phys. 94, 513–556 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Chernov, N., Markarian, R.: Chaotic Billiards. Mathematical Surveys and Monographs, vol. 127. Am. Math. Soc., Providence (2006)

    MATH  Google Scholar 

  11. Gerber, M.: Conditional Stability and Real Analytic Pseudo-Anosov Maps. Mem. Am. Math. Soc., vol. 55, Nr. 321 (1985)

    Google Scholar 

  12. Gerber, M., Katok, A.: Smooth models of Thurston’s pseudo-Anosov maps. Ann. Sci. Éc. Norm. Super. (4) 15, 173–204 (1982)

    MathSciNet  MATH  Google Scholar 

  13. Katok, A.: Bernoulli diffeomorphisms on surfaces. Ann. Math. (2) 110, 529–547 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Katok, A., Burns, K.: Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems. Ergod. Theory Dyn. Syst. 14, 757–785 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Katok, A., Strelcyn, J.-M. (with the collaboration of F. Ledrappier, F. Przytycki): Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lect. Notes. in Math., vol. 1222. Springer, Berlin (1986).

    MATH  Google Scholar 

  16. Krengel, U.: Ergodic Theorems. de Gruyter, Berlin (1985)

    Book  MATH  Google Scholar 

  17. Lewowicz, J.: Lyapunov functions and topological stability. J. Differ. Equ. 38, 192–209 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lewowicz, J.: Lyapunov functions and stability of geodesic flows. In: Palis, J. (ed.) Geometric Dynamics, Rio de Janeiro, 1981. Lect. Notes. in Math., vol. 1007, pp. 463–479. Springer, Berlin (1983)

    Chapter  Google Scholar 

  19. Liverani, C., Wojtkowski, M.: Generalization of the Hilbert metric to the space of positive definite matrices. Pac. J. Math. 166, 339–355 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Liverani, C., Wojtkowski, M.: Ergodicity in Hamiltonian systems. In: Dynamics Reported Expositions in Dynamical. Systems 4, pp. 130–202. Springer, Berlin (1995)

    Google Scholar 

  21. Markarian, R.: Non-uniformly hyperbolic billiards. Ann. Fac. Sci. Toulouse 3, 1207–1239 (1994)

    Article  MathSciNet  Google Scholar 

  22. Oseledets, V.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–221 (1968)

    MATH  Google Scholar 

  23. Pesin, Ya.: Families of invariant manifolds corresponding to nonzero characteristic exponents. Math. USSR, Izv. 10, 1261–1305 (1976)

    Article  Google Scholar 

  24. Pesin, Ya.: Characteristic Lyapunov exponents, and smooth ergodic theory. Russ. Math. Surv. 32, 55–114 (1977)

    Article  MathSciNet  Google Scholar 

  25. Pesin, Ya.: Geodesic flows on closed Riemannian manifolds without focal points. Math. USSR, Izv. 11, 1195–1228 (1977)

    Article  MATH  Google Scholar 

  26. Potapov, V.: The multiplicative structure of J-contractive matrix functions. Transl. Am. Math. Soc. 15, 131–243 (1960)

    MathSciNet  MATH  Google Scholar 

  27. Potapov, V.: Linear fractional transformation of matrices. Transl. Am. Math. Soc. 138, 21–35 (1988)

    MathSciNet  Google Scholar 

  28. Potapov, V.: A theorem on the modulus. I. Transl. Am. Math. Soc. 138, 55–65 (1988)

    MathSciNet  Google Scholar 

  29. Sinai, Ya.: Some rigorous results on decay of correlations. In: Zaslavskij, G. (ed.) Statistical Irreversibility in Nonlinear Systems, supplement to the book, pp. 124–139. Nauka, Moscow (1970)

    Google Scholar 

  30. Sinai, Ya., Chernov, N.: Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls. Russ. Math. Surv. 42, 181–207 (1987)

    Article  MathSciNet  Google Scholar 

  31. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris, Sér. I Math. 328, 1197–1202 (1999)

    Article  ADS  MATH  Google Scholar 

  32. Wojtkowski, M.: Invariant families of cones and Lyapunov exponents. Ergod. Theory Dyn. Syst. 5, 145–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wojtkowski, M.: Measure theoretic entropy of the system of hard spheres. Ergod. Theory Dyn. Syst. 8, 133–153 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wojtkowski, M.: Systems of classical interacting particles with nonvanishing Lyapunov exponents. In: Arnold, L., Crauel, H., Eckmann, J.-P. (eds.) Lyapunov Exponents, Oberwolfach, 1990. Lect. Notes in Math., vol. 1486, pp. 243–262. Springer, Berlin (1991)

    Chapter  Google Scholar 

  35. Wojtkowski, M.: W-flows on Weyl manifolds and Gaussian thermostats. J. Math. Pures Appl. (9) 79, 953–974 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Wojtkowski, M.: Magnetic flows and Gaussian thermostats on manifolds of negative curvature. Fundam. Math. 163, 177–191 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Wojtkowski, M.: Monotonicity, J-algebra of Potapov and Lyapunov exponents. In: Smooth Ergodic Theory and Its Applications, Seattle, 1999. Proc. Sympos. Pure Math., vol. 69, pp. 499–521. Am. Math. Soc., Providence (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Barreira.

Additional information

L.B. and C.V. are supported by the FCT grant PTDC/MAT/117106/2010 and by FCT through CAMGSD, Lisbon. D.D. is supported by the FCT grant SFRH/BD/78247/2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreira, L., Dragičević, D. & Valls, C. Lyapunov Functions and Cone Families. J Stat Phys 148, 137–163 (2012). https://doi.org/10.1007/s10955-012-0524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0524-8

Keywords

Navigation