Skip to main content
Log in

Effect of Droplet Size on the First Order Ziff-Gulari-Barshad (ZGB) Phase Transition

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce a new method to analyze the coexistence region of the constant rate ensemble ZGB discontinuous transition. The method clearly delineates the spinodal and coexistence points in the constant rate ZGB model. Increase in system size reduces the gap between the spinodal and coexistence points. Next we quantify the effect of metastability by introducing a droplet/nucleus of CO occupied sites in the initial system. In systems with initial nucleus of increasing size the distance between the spinodal and the coexistence point decreases, until for a large enough droplet spanning the initial system, the spinodal and the coexistence points become indistinguishable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Ziff, R.M., Gulari, E., Barshad, Y.: Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56, 2553–2556 (1986)

    Article  ADS  Google Scholar 

  2. Ehsasi, M., Matloch, M., Frank, O., Block, J.H., Christmann, K., Rys, F.S., Hirschwald, W.: Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91, 4949–4960 (1989)

    Article  ADS  Google Scholar 

  3. Tome, T., Dickman, R.: Ziff-Gulari-Barshad model with CO desorption: an Ising-like nonequilibrium critical point. Phys. Rev. E 47, 948–952 (1993)

    Article  ADS  Google Scholar 

  4. Machado, E., Buendía, G.M., Rikvold, P.A.: Decay of metastable phases in a model for the catalytic oxidation of CO. Phys. Rev. E 71, 031603 (2005)

    Article  ADS  Google Scholar 

  5. Jensen, I., Fogedby, H.C.: Kinetic phase transitions in a surface-reaction model with diffusion: computer simulations and mean field theory. Phys. Rev. A 42, 1969–1975 (1990)

    Article  ADS  Google Scholar 

  6. Buendía, G.M., Machado, E., Rikvold, P.A.: Response of a model of CO oxidation with CO desorption and diffusion to a periodic external CO pressure. J. Mol. Struct., Theochem 769, 189–192 (2006)

    Article  Google Scholar 

  7. Albano, E.V.: A dimer-monomer catalyzed reaction process with surface reconstruction coupled to reactant coverages. Langmuir 13, 4013–4017 (1997)

    Article  Google Scholar 

  8. Sinha, I., Mukherjee, A.K.: First-order phase transition in a modified Ziff-Gulari-Barshad model with self-oscillating reactant coverages. J. Stat. Phys. 146, 669–686 (2012)

    Article  MATH  Google Scholar 

  9. Machado, E., Buendía, G.M., Rikvold, P.A., Ziff, R.M.: Response of a catalytic reaction to periodic variation of the CO pressure: increased CO2 production and dynamic phase transition. Phys. Rev. E 71, 016120 (2005)

    Article  ADS  Google Scholar 

  10. Sinha, I., Mukherjee, A.K.: Ziff-Gulari-Barshad model with CO desorption under oscillating reactant pressure. Physica A 389, 3128–3133 (2010)

    Article  ADS  Google Scholar 

  11. Sreekumar, P., Jayaraman, V.K., Kulkarni, B.D.: Monte Carlo and cellular automata modeling of CO oxidation on a catalytic surface including the Eley-Rideal step and CO diffusion. Ind. Eng. Chem. Res. 37, 2188–2192 (1998)

    Article  Google Scholar 

  12. Mukherjee, A.K., Sinha, I.: Effect of the Eley-Rideal step on catalytic oxidation of CO under periodic external pressure. Appl. Surf. Sci. 255, 6168–6172 (2009)

    Article  ADS  Google Scholar 

  13. Buendía, G.M., Machado, E., Rikvold, P.A.: Effect of CO desorption and coadsorption with O on the phase diagram of a Ziff-Gulari-Barshad model for the catalytic oxidation of CO. J. Chem. Phys. 131, 184704 (2009)

    Article  ADS  Google Scholar 

  14. Meakin, P.: Simple models for heterogeneous catalysis with a poisoning transition. J. Chem. Phys. 93, 2903–2910 (1990)

    Article  ADS  Google Scholar 

  15. Tambe, S.S., Jayaraman, V.K., Kulkarni, B.D.: Cellular automata modelling of a surface catalytic reaction with Eley-Rideal step: the case of CO oxidation. Chem. Phys. Lett. 225, 303–308 (1994)

    Article  ADS  Google Scholar 

  16. Ehsasi, M., Matloch, M., Frank, O., Block, J.H., Christmann, K., Rys, F.S., Hirschwald, W.: Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91, 4949 (1989)

    Article  ADS  Google Scholar 

  17. Meakin, P., Scalapino, D.J.: Simple models for heterogeneous catalysis: phase transition-like behavior in nonequilibrium systems. J. Chem. Phys. 87, 731 (1987)

    Article  ADS  Google Scholar 

  18. Yaldram, K., Sadiq, A.: Time evolution of a catalytic surface reaction: oxidation of carbon monoxide. J. Phys. A 22, L925 (1989)

    Article  ADS  Google Scholar 

  19. Ziff, R.M., Brosilow, B.J.: Investigation of the first-order phase transition in the A-B2 reaction model using a constant-coverage kinetic ensemble. Phys. Rev. A 46, 4630–4635 (1992)

    Article  ADS  Google Scholar 

  20. Loscar, E.S., Albano, E.V.: Hysteretic effects in the first-order irreversible phase transition of the ZGB model. Comput. Phys. Commun. 180, 488 (2009)

    Article  ADS  Google Scholar 

  21. Loscar, E.S., Albano, E.V.: Numerical study of the evaporation/condensation phase transition of droplets for an irreversible reaction model. Europhys. Lett. 85, 30004 (2009)

    Article  ADS  Google Scholar 

  22. Adams, D.A., Ziff, R.M., Sander, L.M.: Computation of nucleation at a nonequilibrium first-order phase transition using a rare-event algorithm. J. Chem. Phys. 133, 174107 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, I., Mukherjee, A.K. Effect of Droplet Size on the First Order Ziff-Gulari-Barshad (ZGB) Phase Transition. J Stat Phys 147, 707–715 (2012). https://doi.org/10.1007/s10955-012-0508-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0508-8

Keywords

Navigation