Skip to main content
Log in

Flatness Is a Criterion for Selection of Maximizing Measures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For the one-dimensional classical spin system, each spin being able to get Np+1 values, and for a non-positive potential, locally proportional to the distance to one of N disjoint configurations set {(j−1)p+1,…,jp}, we prove that the equilibrium state converges as the temperature goes to 0.

The main result is that the limit is a convex combination of the two ergodic measures with maximal entropy among maximizing measures and whose supports are the two shifts where the potential is the flattest.

In particular, this is a hint to solve the open problem of selection, and this indicates that flatness is probably a/the criterion for selection as it was conjectured by A.O. Lopes.

As a by product we get convergence of the eigenfunction at the log-scale to a unique calibrated subaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. β is the inverse of the temperature, thus β→+∞ means Temp→0, which means we freeze the system.

  2. Note that these Bernoulli shifts are empty interior compact sets.

  3. We emphasize that κ can be assume to be smaller than 4 if β is chosen sufficiently big.

  4. These are different from the truncated sums defined above.

  5. Note that \(\gamma=\alpha_{1}\frac{\theta}{1-\theta }+\alpha\) and F 1 behaves like \(e^{-I_{1}}\frac{1}{\beta^{r}g(\beta)}e^{(\gamma -\alpha_{1}\frac{\theta}{1-\theta} )\beta }\).

References

  1. Akian, M., Bapat, R., Gaubert, S.: Asymptotics of the Perron eigenvalue and eigenvector using max-algebra. C. R. Acad. Sci. Paris, Série I 327, 927–932 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Anantharaman, N., Iturriaga, R., Padilla, P., Sanchez-Morgado, H.: Physical solutions of the Hamilton-Jacobi equation. Discrete Contin. Dyn. Syst., Ser. B 5(3), 513–528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baccelli, F., Cohen, G., Olsder, G.-J., Quadrat, J.-P.: Synchronization and Linearity. Wiley, New York (1992)

    MATH  Google Scholar 

  4. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math., vol. 470. Springer, Berlin (1975)

    MATH  Google Scholar 

  5. Bousch, T.: La condition de Walters. Ann. Sci. Éc. Norm. Super. 34, 287–311 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Baraviera, A., Lopes, A.O., Thieullen, Ph.: A large deviation principle for equilibrium states of Holder potentials: the zero temperature case. Stoch. Dyn. 16(1), 77–96 (2006)

    Article  MathSciNet  Google Scholar 

  7. Baraviera, A., Lopes, A.O., Mengue, J.: On the selection of subaction and measure for a subclass of potentials defined by P. Walters. Preprint (November 2011)

  8. Baraviera, A., Leplaideur, R., Lopes, A.O.: Selection of measures for a potential with two maxima at the zero temperature limit. SIAM J. Appl. Dyn. Syst. 11(1), 243–260 (2012)

    Article  MATH  Google Scholar 

  9. Brémont, J.: Gibbs measures at temperature zero. Nonlinearity 16(2), 419–426 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Chazottes, J.R., Hochman, M.: On the zero-temperature limit of Gibbs states. Commun. Math. Phys. 297, 1 (2010)

    Article  MathSciNet  Google Scholar 

  11. Chazottes, J.R., Gambaudo, J.M., Ulgade, E.: Zero-temperature limit of one dimensional Gibbs states via renormalization: the case of locally constant potentials. Ergod. Theory Dyn. Syst. doi:10.1017/S014338571000026X

  12. Contreras, G., Lopes, A.O., Thieullen, Ph.: Lyapunov minimizing measures for expanding maps of the circle. Ergod. Theory Dyn. Syst. 21, 1379–1409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gallivotti, G.: Ising model and Bernoulli schemes in one dimension. Commun. Math. Phys. 32, 183–190 (1973)

    Article  ADS  Google Scholar 

  14. Garibaldi, E., Lopes, A.O.: On the Aubry-Mather theory for symbolic dynamics. Ergod. Theory Dyn. Syst. 28, 791–815 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Garibaldi, E., Lopes, A.O., Thieullen, Ph.: On calibrated and separating sub-actions. Bull. Braz. Math. Soc. (N.S.) 40(4), 577–602 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics, vol. 9. de Gruyter, Berlin (1988)

    Book  MATH  Google Scholar 

  17. Hartmann, A.K.: Ground states of two-dimensional Ising spin glasses: fast algorithms, recent developments and a ferromagnet-spin glass mixture. J. Stat. Phys. 144(3), 519–540 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Leplaideur, R.: A dynamical proof for the convergence of Gibbs measures at temperature zero. Nonlinearity 18(6), 2847–2880 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Lopes, A.O., Oliveira, E., Smania, D.: Ergodic transport theory and piecewise analytic sub actions for analytic dynamics. Bull. Braz. Math. (accepted)

  20. Mañé, R.: On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5, 623–638 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Nekhoroshev, N.N.: Asymptotics of Gibbs measures in one-dimensional lattice models. Mosc. Univ. Math. Bull. 59(1), 10–15 (2004)

    MathSciNet  Google Scholar 

  22. Radin, C.: Low temperature and the origin of crystalline symmetry. Int. J. Mod. Phys. B 1, 1157–1191 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  23. Radin, C.: Disordered ground states of classical lattice models. Rev. Math. Phys. 3, 125–135 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruelle, D.: Thermodynamic Formalism. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  25. Schrader, R.: Ground states in classical lattice systems with hard core. Commun. Math. Phys. 16, 247–264 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  26. Sütö, A.: Superimposed particles in 1D ground states. J. Phys. A 44(3), 1751–8121 (2011)

    Article  Google Scholar 

  27. van Enter, A.C.D., Ruszel, W.M.: Chaotic temperature dependence at zero temperature. J. Stat. Phys. 127(3), 567–573 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Leplaideur.

Additional information

Part of this research was supported by DynEurBraz IRSES FP7 230844 & ANR Project WeakKam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leplaideur, R. Flatness Is a Criterion for Selection of Maximizing Measures. J Stat Phys 147, 728–757 (2012). https://doi.org/10.1007/s10955-012-0497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0497-7

Keywords

Navigation