Skip to main content
Log in

A Renormalization Group Classification of Nonstationary and/or Infinite Second Moment Diffusive Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Anomalous diffusion processes are often classified by their mean square displacement. If the mean square displacement grows linearly in time, the process is considered classical. If it grows like t β with β<1 or β>1, the process is considered subdiffusive or superdiffusive, respectively. Processes with infinite mean square displacement are considered superdiffusive. We begin by examining the ways in which power-law mean square displacements can arise; namely via non-zero drift, nonstationary increments, and correlated increments. Subsequently, we describe examples which illustrate that the above classification scheme does not work well when nonstationary increments are present. Finally, we introduce an alternative classification scheme based on renormalization groups. This scheme classifies processes with stationary increments such as Brownian motion and fractional Brownian motion in the same groups as the mean square displacement scheme, but does a better job of classifying processes with nonstationary increments and/or processes with infinite second moments such as α-stable Lévy motion. A numerical approach to analyzing data based on the renormalization group classification is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–560 (1905)

    Article  Google Scholar 

  2. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Cushman, J.H., O’Malley, D., Park, M.: Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Phys. Rev. E 79, 032101 (2009)

    Article  ADS  Google Scholar 

  4. O’Malley, D., Cushman, J.H.: Fractional Brownian motion run with a non-linear clock. Phys. Rev. E 82, 032102 (2010)

    Article  ADS  Google Scholar 

  5. Golding, I., Cox, E.C.: Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96(9), 098102 (2006)

    Article  ADS  Google Scholar 

  6. Kantor, Y., Kardar, M.: Anomalous diffusion with absorbing boundary. Phys. Rev. E 76, 061121 (2007)

    Article  ADS  Google Scholar 

  7. Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  8. Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. Ser. A 110, 709–737 (1926)

    Article  ADS  Google Scholar 

  9. Humphries, N.E., Queiroz, N., Dyer, J.R.M., Pade, N.G., Musyl, M.K., Schaefer, K.M., Fuller, D.W., Brunnschweiler, J.M., Doyle, T.K., Houghton, J.D.R., Hays, G.C., Jones, C.S., Noble, L.R., Wearmouth, V.J., Southall, E.J., Sims, D.W.: Environmental context explains Levy and Brownian movement patterns of marine predators. Nature 465, 1066–1069 (2010)

    Article  ADS  Google Scholar 

  10. Viswanathan, G., Afanasyev, V., Buldyrev, S., Murphy, E.J., Prince, P.A., Stanley, H.E.: Levy flight search patterns of wandering albatrosses. Nature 381, 413–415 (1996)

    Article  ADS  Google Scholar 

  11. Bassler, K.E., McCauley, J.L., Gunaratne, G.H.: Nonstationary increments, scaling distributions and variable diffusion processes in financial markets. Proc. Natl. Acad. Sci. 104, 17287–17290 (2007)

    Article  ADS  Google Scholar 

  12. Seemann, L., McCauley, J.L., Gunaratne, G.H.: Intraday volatility and scaling in high frequency foreign exchange markets. Int. Rev. Financ. Anal. 20, 121–126 (2011)

    Article  Google Scholar 

  13. Montroll, E.W., Weiss, G.H.: Random walks on lattices. II. J. Math. Phys. 6, 167 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  14. Scher, H., Montroll, E.W.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 2455 (1975)

    Article  ADS  Google Scholar 

  15. Klafter, J., Blumen, A., Shlesinger, M.F.: Stochastic pathway to anomalous diffusion. Phys. Rev. A 35, 3081 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  16. Meerschaert, M.M., Scheffler, H.P.: Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Probab. 41, 623–638 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Becker-Kern, P., Meerschaert, M.M., Scheffler, H.P.: Limit theorems for coupled continuous time random walks. Ann. Probab. 32, 730 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Becker-Kern, P., Meerschaert, M.M., Scheffler, H.P.: Limit theorems for continuous-time random walks with two scales. J. Appl. Probab. 41, 455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  20. Kolmogorov, A.N.: Wienersche spiralen und einige andere interessante kurven im hilbertschen raum. C. R. (Dokl.) Acad. Sci. URSS 26, 115 (1940)

    Google Scholar 

  21. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. He, Y., Burov, S., Metzler, R., Barkai, E.: Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett. 101, 058101 (2008)

    Article  ADS  Google Scholar 

  23. Lubelski, A., Sokolov, I.M., Klafter, J.: Nonergodicity mimics inhomogeneity in single particle tracking. Phys. Rev. Lett. 100, 250602 (2008)

    Article  ADS  Google Scholar 

  24. Deng, W., Barkai, E.: Ergodic properties of fractional Brownian-Langevin motion. Phys. Rev. E 79, 011112 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. Cushman, J.H., Park, M., O’Malley, D.: A stochastic model for anomalous diffusion in confined nano-films near a strain-induced critical point. Adv. Water Resour. (2011). doi:10.1016/j.advwatres.2011.01.005

    Google Scholar 

  26. Burov, S., Jeon, J.-H., Metzler, R., Barkai, E.: Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys. Chem. Chem. Phys. 13, 1800–1812 (2011)

    Article  Google Scholar 

  27. Kong, X.P., Cohen, E.G.D.: Anomalous diffusion in a lattice-gas wind-tree model. Phys. Rev. B 40, 4838 (1989)

    Article  ADS  Google Scholar 

  28. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  29. Park, M., Cushman, J.H.: The complexity of Brownian processes run with non-linear clocks. Mod. Phys. Lett. B 25, 1–10 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Taqqu, M.S.: Fractional Brownian motion and long-range dependence. In: Doukhan, P., Oppenheim, G., Taqqu, M.S. (eds.) Theory and Applications of Long Range Dependence. Birkhauser, Cambridge (2003)

    Google Scholar 

  31. Jeon, J., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., Berg-Sorenson, K., Oddershede, L., Metzler, R.: In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011)

    Article  ADS  Google Scholar 

  32. Condamin, S., Tejedor, V., Voituriez, R., Bénichou, O., Klafter, J.: Probing microscopic origins of confined subdiffusion by first-passage observables. Proc. Natl. Acad. Sci. USA 105, 5675 (2008)

    Article  ADS  Google Scholar 

  33. Magdziarz, M., Weron, A., Burnecki, K., Klafter, J.: Fractional Brownian motion versus the continuous-time random walk: A simple test for subdiffusive dynamics. Phys. Rev. Lett. 103, 180602 (2009)

    Article  ADS  Google Scholar 

  34. Tejedor, V., Bénichou, O., Voituriez, R., Jungmann, R., Simmel, F., Selhuber-Unkel, C., Oddershede, L.B., Metzler, R.: Quantitative analysis of single particle trajectories: Mean maximal excursion method. Biophys. J. 98, 1364 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation for supporting this work under contracts CMG-0934806 and EAR-0838224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel O’Malley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Malley, D., Cushman, J.H. A Renormalization Group Classification of Nonstationary and/or Infinite Second Moment Diffusive Processes. J Stat Phys 146, 989–1000 (2012). https://doi.org/10.1007/s10955-012-0448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0448-3

Keywords

Navigation