Decay of a Linear Pendulum in a Free-Molecular Gas and in a Special Lorentz Gas

Abstract

A circular disk without thickness is placed in a gas, and an external force, obeying Hooke’s law, is acting perpendicularly on the disk. If the disk is displaced perpendicularly from its equilibrium position and released, then it starts an oscillatory or non-oscillatory unsteady motion, which decays as time goes on because of the drag exerted by the gas molecules. This unsteady motion, i.e., the decay of this linear pendulum, is investigated numerically, under the diffuse reflection condition on the surface of the disk, with special interest in the manner of its decay, for two kinds of gases: one is a collisionless gas (or Knudsen gas) and the other is a special Lorentz gas interacting with a background. It is shown that the decay of the displacement of the disk is slow and is in proportion to an inverse power of time for the collisionless gas. The result complements the existing mathematical study of a similar problem (Caprino et al. in Math. Models Methods Appl. Sci. 17:1369–1403, 2007) in the case of non-oscillatory decay. It is also shown that the manner of the decay changes significantly for the special Lorentz gas.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Caprino, S., Marchioro, C., Pulvirenti, M.: Approach to equilibrium in a microscopic model of friction. Comm. Math. Phys. 264, 167–189 (2006)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  2. 2.

    Caprino, S., Cavallaro, G., Marchioro, C.: On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17, 1369–1403 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Cavallaro, G.: On the motion of a convex body interacting with a perfect gas in the mean-field approximation. Rend. Mat. Appl. (7) 27, 123–145 (2007)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Aoki, K., Cavallaro, G., Marchioro, C., Pulvirenti, M.: On the motion of a body in thermal equilibrium immersed in a perfect gas. Math. Model. Numer. Anal. 42, 263–275 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Aoki, K., Tsuji, T., Cavallaro, G.: Approach to steady motion of a plate moving in a free-molecular gas under a constant external force. Phys. Rev. E 80, 016309 (2009)

    ADS  Article  Google Scholar 

  6. 6.

    Tsuji, T., Aoki, K.: Decay of an oscillating plate in a free-molecular gas. In: Levin, D.A., Wysong, I.J., Garcia, A.L. (eds.) Rarefied Gas Dynamics. pp. 140–145. AIP, Melville (2011)

    Google Scholar 

  7. 7.

    Sone, Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkäuser, Boston (2007); Supplementary Notes and Errata: Kyoto University Research Information Repository. http://hdl.handle.net/2433/66098

    Google Scholar 

  8. 8.

    Cavallaro, G., Marchioro, C.: On the approach to equilibrium for a pendulum immersed in a Stokes fluid. Math. Models Methods Appl. Sci. 20, 1999–2019 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Cavallaro, G., Marchioro, C., Tsuji, T.: Approach to equilibrium of a rotating sphere in a Stokes flow. Ann. Univ. Ferrara 57, 211–228 (2011)

    Article  Google Scholar 

  10. 10.

    Gallavotti, G.: Statistical Mechanics: A Short Treatise. Springer, Berlin (1999)

    Google Scholar 

  11. 11.

    Caglioti, E., Golse, F.: On the Boltzmann-Grad limit for the two dimensional periodic Lorentz gas. J. Stat. Phys. 141, 264–317 (2010)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  12. 12.

    Boltzmann, L.: Lectures on Gas Theory. Dover, New York (1995)

    Google Scholar 

  13. 13.

    Takata, S.: Invitation to the kinetic theory. Nagare (J. Jpn. Soc. Fluid Mech.) 27, 387–396 (2008) (in Japanese)

    Google Scholar 

  14. 14.

    Gruber, Ch., Piasecki, J.: Stationary motion of the adiabatic piston. Physica A 268, 412–423 (1999)

    Article  Google Scholar 

  15. 15.

    Chernov, N., Lebowitz, J.L., Sinai, Ya.: Scaling dynamics of a massive piston in a cube filled with ideal gas: exact results. J. Stat. Phys. 109, 529–548 (2002)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  16. 16.

    Lebowitz, J.L., Piasecki, J., Sinai, Ya.: In: Hard Ball Systems and the Lorentz Gas. Encyclopedia of Mathematical Sciences, vol. 101, pp. 217–227. Springer, New York (2000)

    Google Scholar 

  17. 17.

    Kestemont, E., Van den Broeck, C., Mansour, M.M.: The “adiabatic” piston: and yet it moves. Europhys. Lett. 49, 143–149 (2000)

    ADS  Article  Google Scholar 

  18. 18.

    Chernov, N., Lebowitz, J.L.: Dynamics of a massive piston in an ideal gas: oscillatory motion and approach to equilibrium. J. Stat. Phys. 109, 507–527 (2002)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  19. 19.

    Caglioti, E., Chernov, N., Lebowitz, J.L.: Stability of solutions of hydrodynamic equations describing the scaling limit of a massive piston in an ideal gas. Nonlinearity 17, 897–923 (2004)

    MathSciNet  ADS  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tetsuro Tsuji.

Additional information

This work was supported by the grant-in-aid for scientific research No. 23360048 from JSPS.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsuji, T., Aoki, K. Decay of a Linear Pendulum in a Free-Molecular Gas and in a Special Lorentz Gas. J Stat Phys 146, 620–645 (2012). https://doi.org/10.1007/s10955-011-0412-7

Download citation

Keywords

  • Decay of pendulum
  • Free-molecular gas
  • Lorentz gas
  • Kinetic theory of gases