Skip to main content
Log in

Transforming Fixed-Length Self-avoiding Walks into Radial SLE8/3

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial SLE8/3 in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial SLE8/3. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial SLE8/3, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, M., Bernard, D.: 2D growth processes: SLE and Loewner chains. Phys. Rep. 432, 115–221 (2006). Archived as arXiv:math-ph/0602049v1

    Article  ADS  MathSciNet  Google Scholar 

  2. Cardy, J.: SLE for theoretical physicists. Ann. Phys. 318, 81–118 (2005). Archived as arXiv:cond-mat/0503313v2 [cond-mat.stat-mech]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Clisby, N.: Efficient implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys. 140, 349–392 (2010). Archived as arXiv:1005.1444v1 [cond-mat.stat-mech]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Duminil-Copin, H., Smirnov, S.: The connective constant of the honeycomb lattice equals \(\sqrt{2+\sqrt{2}}\). Preprint (2010). Archived as arXiv:1007.0575v1 [math-ph]

  5. Dyhr, B., Gilbert, M., Kennedy, T., Lawler, G., Passon, S.: The self-avoiding walk in a strip. J. Stat. Phys. 144, 1–22 (2011). Archived as arXiv:1008.4321v1 [math.PR]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Flory, P.J.: The configuration of a real polymer chain. J. Chem. Phys. 17, 303–310 (1949)

    Article  ADS  Google Scholar 

  7. Kager, W., Nienhuis, B.: A guide to stochastic Loewner evolution and its applications. J. Stat. Phys. 115, 1149–1229 (2004). Archived as arXiv:math-ph/0312056v3

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Kennedy, T.: A faster implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys. 106, 407–429 (2002). Archived as arXiv:cond-mat/0109308v1

    Article  MATH  Google Scholar 

  9. Kennedy, T.: Monte Carlo tests of SLE predictions for 2D self-avoiding walks. Phys. Rev. Lett. 88, 130601 (2002). Archived as arXiv:math/0112246v1 [math.PR]

    Article  ADS  Google Scholar 

  10. Kennedy, T.: Conformal invariance and stochastic Loewner evolution predictions for the 2D self-avoiding walk—Monte Carlo tests. J. Stat. Phys. 114, 51–78 (2004). Archived as arXiv:math/0207231v2 [math.PR]

    Article  MATH  ADS  Google Scholar 

  11. Kennedy, T., Lawler, G.: Lattice effects in the scaling limit of the two-dimensional self-avoiding walk. Preprint (2011). Archived as arXiv:1109.3091v1 [math.PR]

  12. Kesten, H.: On the number of self-avoiding walks. J. Math. Phys. 4, 960–969 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Kesten, H.: On the number of self-avoiding walks II. J. Math. Phys. 5, 1128–1137 (1964)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Lawler, G.: Conformally Invariant Processes in the Plane. AMS, Providence (2005)

    MATH  Google Scholar 

  15. Lawler, G.: Partition functions, loop measure, and versions of SLE. J. Stat. Phys. 134, 813–837 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Lawler, G.: Schramm-Loewner evolution. In: Sheffield, S., Spencer, T. (Eds.) Statistical Mechanics, IAS/Park City Mathematical Series, pp. 231–295. AMS, Providence (2009). Archived as arXiv:0712.3256v1 [math.PR]

    Google Scholar 

  17. Lawler, G., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16, 917–955 (2003). Archived as arXiv:math/0209343v2 [math.PR]

    Article  MATH  MathSciNet  Google Scholar 

  18. Lawler, G., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Part 2. Proc. Sympos. Pure Math., vol. 72, pp. 339–364. AMS, Providence (2004). Archived as arXiv:math/0204277v2 [math.PR]

    Google Scholar 

  19. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Basel (1996)

    Book  MATH  Google Scholar 

  20. Nienhuis, B.: Exact critical exponents for the O(n) models in two dimensions. Phys. Rev. Lett. 49, 1062–1065 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  21. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000). arXiv:math/9904022v2 [math.PR]

    Article  MATH  MathSciNet  Google Scholar 

  22. Schramm, O.: Private communication (November, 2002)

  23. Werner, W.: Random planar curves and Schramm-Loewner evolutions. In: Ecole d’Eté de Probabilités de Saint-Flour XXXII—2002. Lecture Notes in Mathematics, vol. 1840, pp. 107–195. Springer, Berlin (2004). Archived as arXiv:math/0303354v1 [math.PR]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, T. Transforming Fixed-Length Self-avoiding Walks into Radial SLE8/3 . J Stat Phys 146, 281–293 (2012). https://doi.org/10.1007/s10955-011-0406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0406-5

Keywords

Navigation