Skip to main content
Log in

Rank-Driven Markov Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a class of Markovian systems of N elements taking values in [0,1] that evolve in discrete time t via randomized replacement rules based on the ranks of the elements. These rank-driven processes are inspired by variants of the Bak–Sneppen model of evolution, in which the system represents an evolutionary ‘fitness landscape’ and which is famous as a simple model displaying self-organized criticality. Our main results are concerned with long-time large-N asymptotics for the general model in which, at each time step, K randomly chosen elements are discarded and replaced by independent U[0,1] variables, where the ranks of the elements to be replaced are chosen, independently at each time step, according to a distribution κ N on {1,2,…,N}K. Our main results are that, under appropriate conditions on κ N , the system exhibits threshold behavior at s ∈[0,1], where s is a function of κ N , and the marginal distribution of a randomly selected element converges to U[s ,1] as t→∞ and N→∞. Of this class of models, results in the literature have previously been given for special cases only, namely the ‘mean-field’ or ‘random neighbor’ Bak–Sneppen model. Our proofs avoid the heuristic arguments of some of the previous work and use Foster–Lyapunov ideas. Our results extend existing results and establish their natural, more general context. We derive some more specialized results for the particular case where K=2. One of our technical tools is a result on convergence of stationary distributions for families of uniformly ergodic Markov chains on increasing state-spaces, which may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  2. Aspandiiarov, S., Iasnogorodski, R.: General criteria of integrability of functions of passage-times for non-negative stochastic processes and their applications. Theory Probab. Appl. 43, 343–369 (1999); translated from Teor. Veroyatn. Primen. 43 (1998) 509–539 (in Russian)

    Article  MathSciNet  Google Scholar 

  3. Aspandiiarov, S., Iasnogorodski, R.: Asymptotic behaviour of stationary distributions for countable Markov chains, with some applications. Bernoulli 5, 535–569 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aspandiiarov, S., Iasnogorodski, R., Menshikov, M.: Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant. Ann. Probab. 24, 932–960 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71, 4083–4086 (1993)

    Article  ADS  Google Scholar 

  6. de Boer, J., Derrida, B., Flyvbjerg, H., Jackson, A.D., Wettig, T.: Simple model of self-organized biological evolution. Phys. Rev. Lett. 73, 906–909 (1994)

    Article  ADS  Google Scholar 

  7. de Boer, J., Jackson, A.D., Wettig, T.: Criticality in simple models of evolution. Phys. Rev. E 51, 1059–1074 (1995)

    Article  ADS  Google Scholar 

  8. Burke, C.J., Rosenblatt, M.: A Markovian function of a Markov chain. Ann. Math. Stat. 29, 1112–1122 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chung, K.L.: Markov Chains with Stationary Transition Probabilities, 2nd edn. Springer, Berlin (1967)

    MATH  Google Scholar 

  10. Durrett, R.: Probability: Theory and Examples. Wadsworth & Brooks/Cole, Pacific Grove (1991)

    MATH  Google Scholar 

  11. Fayolle, G., Malyshev, V.A., Menshikov, M.V.: Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  12. Flyvbjerg, H., Sneppen, K., Bak, P.: Mean field theory for a simple model of evolution. Phys. Rev. Lett. 71, 4087–4090 (1993)

    Article  ADS  Google Scholar 

  13. Garcia, G.J.M., Dickman, R.: On the thresholds, probability densities, and critical exponents of Bak–Sneppen-like models. Physica A 342, 164–170 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gillett, A.J.: Phase Transitions in Bak–Sneppen Avalanches and in a Continuum Percolation Model, PhD thesis, Vrije Universiteit, Amsterdam (2007)

  15. Gillett, A., Meester, R., Nuyens, M.: Bounds for avalanche critical values of the Bak–Sneppen model. Markov Process. Relat. Fields 12, 679–694 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Gillett, A., Meester, R., Van Der Wal, P.: Maximal avalanches in the Bak–Sneppen model. J. Appl. Probab. 43, 840–851 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grinfeld, M., Knight, P.A., Wade, A.R.: Bak–Sneppen-type models and rank-driven processes. Phys. Rev. E (2010, to appear). arXiv:1011.1777

  18. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv. Appl. Probab. 14, 502–525 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Head, D.A., Rodgers, G.J.: The anisotropic Bak–Sneppen model. J. Phys. A, Math. Gen. 31, 3977–3988 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Jensen, H.J.: Self-Organized Criticality. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  21. Labzowksy, G.L., Pis’mak, Yu.M.: Exact analytical results for the Bak–Sneppen model with arbitrary number of randomly interacting species. Phys. Lett. A 246, 377–383 (1998)

    Article  ADS  Google Scholar 

  22. Lamperti, J.: Criteria for stochastic processes II: passage-time moments. J. Math. Anal. Appl. 7, 127–145 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  23. Meester, R., Znamenski, D.: Limit behavior of the Bak–Sneppen evolution model. Ann. Probab. 31, 1986–2002 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meester, R., Znamenski, D.: Critical thresholds and the limit distribution in the Bak–Sneppen model. Commun. Math. Phys. 246, 63–86 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Menshikov, M.V., Popov, S.Yu.: Exact power estimates for countable Markov chains. Markov Process. Relat. Fields 1, 57–78 (1995)

    MATH  MathSciNet  Google Scholar 

  26. Meyn, S., Tweedie, R.L., Chains, Markov: Stochastic Stability, 2nd edn. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  27. Moulin, H.: Game Theory for the Social Sciences, 2nd edn. New York University Press, New York (1986)

    Google Scholar 

  28. Pemantle, R.: A survey of random processes with reinforcement. Probab. Surv. 4, 1–79 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pis’mak, Yu.M.: Exact solution of master equations for a simple model of self-organized biological evolution. J. Phys. A, Math. Gen. 28, 3109–3115 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  30. Tweedie, R.L.: The existence of moments for stationary Markov chains. J. Appl. Probab. 20, 191–196 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Wade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinfeld, M., Knight, P.A. & Wade, A.R. Rank-Driven Markov Processes. J Stat Phys 146, 378–407 (2012). https://doi.org/10.1007/s10955-011-0368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0368-7

Keywords

Navigation