Skip to main content
Log in

Series Solutions of Time-Fractional Host-Parasitoid Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, Adomian’s decomposition method (ADM) has been used for solving time-fractional host-parasitoid system. The derivatives are understood in the Caputo sense. The reason of using fractional order differential equations (FOD) is that FOD are naturally related to systems with memory which exists in most biological systems. Also they are closely related to fractals which are abundant in biological systems. Numerical example justifies the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Godfray, H.C.J.: Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton (1994)

    Google Scholar 

  2. Hassell, M.P.: The Spatial and Temporal Dynamics of Host-Parasitoid Interactions. Oxford University Press, Oxford (2000)

    Google Scholar 

  3. Hochberg, M.E., Ives, A.R. (eds.): Parasitoid Population Biology. Princeton University Press, Princeton (2000)

    Google Scholar 

  4. Hassell, M.P., May, R.M.: Aggregation of predators and insect parasites and its effect on stability. J. Anim. Ecol. 43, 567–594 (1974)

    Article  Google Scholar 

  5. Hassell, M.P.: The Dynamics of Arthropod Predator-Prey Associations. Princeton University Press, Princeton (1978)

    Google Scholar 

  6. May, R.M., Hassell, M.P., Anderson, R.M., Tonkyn, D.W.: Density dependence in hostparasitoid models. J. Anim. Ecol. 50, 855–865 (1981)

    Article  MathSciNet  Google Scholar 

  7. May, R.M., Hassell, M.P.: The dynamics of multiparasitoid-host interactions. Am. Nat. 117, 234–261 (1980)

    Article  MathSciNet  Google Scholar 

  8. Comins, H.N., Hassell, M.P., May, R.M.: The spatial dynamics of host-parasitoid systems. J. Anim. Ecol. 61(3), 735–748 (1992)

    Article  Google Scholar 

  9. Hassell, M.P., Pacala, S.W.: Heterogeneity of host-parasitoid interactions. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 330, 203–220 (1990)

    Article  ADS  Google Scholar 

  10. Ives, A.R.: Spatial heterogeneity and host-parasitoid dynamics: do we need to study. Behav. Oikos 74, 366–376 (1995)

    Article  Google Scholar 

  11. Rohani, P., Ruxton, G.D.: Dispersal induced instabilities in host-parasitoid metapopulations. Theor. Popul. Biol. 55, 23–36 (1999)

    Article  MATH  Google Scholar 

  12. Savill, N.J., Rohani, P., Hogeweg, P.: Self-reinforcing spatial patterns enslave evolution in a host-parasitoid system. J. Theor. Biol. 188, 11–20 (1997)

    Article  Google Scholar 

  13. van Poecke, P.R.M., Roosjen, M., Pumarino, L., Dicke, M.: Attraction of the specialist parasitoid Cotesia rubecula to Arabidopsis thaliana infested by host or non-host herbivore species. Entomol. Exp. Appl. 107, 229–236 (2003)

    Article  Google Scholar 

  14. Pearce, I.G., Chaplain, M.A.J., Schofield, P.G., Anderson, A.R.A., Hubbard, S.F.: Chemotaxis induced spatio-temporal heterogeneity in multi-species host-parasitoid systems. J. Math. Biol. 55, 365–388 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cameron, P.J., Walker, G.P.: Field evaluation of Cotesia rubecula. An introduced parasitoid of Pieris rapae in New Zealand. Biol. Control 31(2), 367–374 (2002)

    Google Scholar 

  16. Pearce, I.G., Chaplain, M.A.J., Schofield, P.G., Anderson, A.R.A., Hubbard, S.F.: Modelling the spatio-temporal dynamics of multi-species host-parasitoid interactions: heterogeneous patterns and ecological implications. J. Theor. Biol. 241, 876–886 (2006)

    Article  MathSciNet  Google Scholar 

  17. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic, Dordrecht (1994)

    MATH  Google Scholar 

  18. Adomian, G.: A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135, 501–544 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Munkhammar, J.D.: Fractional calculus and the Taylor–Riemann series. Undergrad. J. Math. 6(1), 1–19 (2005)

    Google Scholar 

  20. Koh, C.G., Kelly, J.M.: Application of fractional derivatives to seismic analysis of base-isolated models. Earthquake Eng. Struct. Dyn. 19, 229–241 (1990)

    Article  Google Scholar 

  21. Ahmed, E., El-Misiery, A.E.M.: On a fractional model for Earthquakes. Appl. Math. Comput. 178, 207 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Momani, S., Odibat, Z.: Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 355, 271–279 (2006)

    Article  MATH  ADS  Google Scholar 

  23. Makris, N., Dargush, G.F., Constantinou, M.C.: Dynamic analysis of generalized viscoelastic fluids. J. Eng. Mech. 119, 1663–1679 (1993)

    Article  Google Scholar 

  24. Mainardi, F., Pironi, P., Tampier, F.: A numerical approach to the generalized Basset problem for a sphere accelerating in a viscous fluid. In: Thibault, P.A., Bergeron D.M. (eds.), Proceeding CFD 95, vol. 2, pp. 105–112 (1995)

  25. Wang, S.W., Xu, M.Y.: Axial coquette flow of two kinds of fractional viscoelastic fluids in an annulus. Nonlinear Anal., Real World Appl. 10(2), 1087–1096 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Momani, S., Odibat, Z.: Analytical solutions of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177(2), 488–494 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Zaborovski, V., Podgurski, Y., Yegorov, S.: New traffic model on the base of fractional calculus. Internet http://www.neva.ru/conf/art/art8.html

  29. Harmantzis, F.C., Hatzinakos, D., Katzela, I.: Tail probabilities for the multiplexing of fractional α-stable broadband traffic. In: ICC’01, Helsinki, Finland, 2001

  30. Karasaridis, A., Hatzinakos, D.: Network heavy traffic modeling using α-stable self-similar processes. IEEE Trans. Commun. 4(49), 1203–1214 (2000)

    Google Scholar 

  31. Cherruault, Y.: Convergence of Adomian’s method. Kybernetes 18, 31–38 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Cherruault, Y., Adomian, G.: Decomposition methods: a new proof of convergence. Math. Comput. Model. 18, 103–106 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nagarhasta, N., Some, B., Abbaoui, K., Cherruault, Y.: New numerical study of Adomian method applied to a diffusion model. Kybernetes 31, 61 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Momani, S.: Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos Solitons Fractals 28, 930–937 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177, 488–494 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 31, 1248–1255 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Odibat, Z., Momani, S.: Approximate solutions for boundary value problems of time-fractional wave equation. Appl. Math. Comput. 181, 767–774 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, New York (1999)

    MATH  Google Scholar 

  39. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Part II. J. Roy. Austral. Soc. 13, 529–539 (1967)

    Google Scholar 

  40. Wazwaz, A.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. Math. Comput. 111, 53–69 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. M. Arafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arafa, A.A.M. Series Solutions of Time-Fractional Host-Parasitoid Systems. J Stat Phys 145, 1357–1367 (2011). https://doi.org/10.1007/s10955-011-0339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0339-z

Keywords

Navigation