Skip to main content
Log in

Influence of Coupling Delay on Noise Induced Coherent Oscillations in Excitable Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Influence of small time-delays in coupling between noisy excitable systems on the coherence resonance and self-induced stochastic resonance is studied. Parameters of delayed coupled deterministic excitable units are chosen such that the system has only one attractor, namely the stationary state, for any value of the coupling and the time-lag. Addition of white noise induces qualitatively different types of coherent oscillations, and we analyzed the influence of coupling time-delay on the properties of these coherent oscillations. The main conclusion is that time-lag τ≥1, but still smaller than the refractory period, and sufficiently strong coupling drastically change signal to noise ratio in the quantitative and qualitative way. An interval of noise values implies quite large signal to noise ratio and different types of noise induced coherence are greatly enhanced. We also observed coincident spiking for small noise intensity and time-lag proportional to the inter-spike interval of the coherent spike trains. On the other hand, time-lags τ<1 and/or weak coupling induce negligible changes in the properties of the stochastic coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2005)

    Google Scholar 

  2. Mainen, Z.F., Sejnowski, T.J.: Science 268, 1503 (1995)

    Article  ADS  Google Scholar 

  3. Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Phys. Rep. 392, 321 (2004)

    Article  ADS  Google Scholar 

  4. Horsthemke, W., Lefevr, R.: Noise Induced Transitions: Theory and Applications in Physics, Chemistry and Biology. Springer, Berlin (2007)

    Google Scholar 

  5. Gammaitini, L., Hängi, P., Jung, P., Marchesoni, F.: Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  6. Lee DeVille, R.E., Vanden-Eijnden, E. Muratov, C.B.: Phys. Rev. E 72, 031105 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. Borromeo, M., Giusepponi, S., Marchesoni, F.: Phys. Rev. E 74, 031121 (2006)

    Article  ADS  Google Scholar 

  8. Borromeo, M., Marchesoni, F.: Phys. Rev. E 75, 041106 (2007)

    Article  ADS  Google Scholar 

  9. Kandel, V., Schwartz, J.H., Jessel, T.M.: Principles of Neural Sciences, 3rd edn. Elsevier, New York (1991)

    Google Scholar 

  10. Strogatz, S.H.: Nature (London) 394, 316 (1998)

    Article  ADS  Google Scholar 

  11. Burić, N., Todorović, D.: Phys. Rev. E 67, 066222 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  12. Buric, N., Grozdanovic, I., Vasovic, N.: Chaos Solitons Fractals 23, 1221 (2005)

    MathSciNet  ADS  MATH  Google Scholar 

  13. Dhamala, M., Jirsa, V.K., Ding, M.: Phys. Rev. Lett. 92, 074104 (2004)

    Article  ADS  Google Scholar 

  14. Rossoni, E., Chen, Y., Ding, M., Feng, J.: Phys. Rev. E 71, 061904 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. Wang, Q., Lu, Q., Gunrong, C.: Int. J. Bifurc. Chaos 18, 1189 (2008)

    Article  MATH  Google Scholar 

  16. Liao, X., Mao, X.: Anal. Appl. 14, 165–185 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Blythe, S., Mao, X., Liao, X.: J. Franklin Inst. 338, 481 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guillouzic, S., L’Heureux, I., Longtin, A.: Phys. Rev. E 59, 3970 (1999)

    Article  ADS  Google Scholar 

  19. Burić, N., Todorović, K., Vasović, N.: Phys. Rev. E 78, 036211 (2008)

    Article  ADS  Google Scholar 

  20. Janson, N.B., Balanov, A.G., Schöll, E.: Phys. Rev. Lett. 93, 010601 (2004)

    Article  ADS  Google Scholar 

  21. Sainz-Trapaga, M., Masoller, C., Braun, M.A., Huber, M.T.: Phys. Rev. E 70, 031904 (2004)

    Article  ADS  Google Scholar 

  22. Buric, N., Todorovic, K., Vasovic, N.: Chaos Solitons Fractals 40, 2405 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Misono, M., Todo, T., Miyakawa, K.: J. Phys. Soc. Jpn. 78, 014802 (2008)

    Article  ADS  Google Scholar 

  24. Ohira, T., Sato, Y.: Phys. Rev. Lett. 82, 2811 (1999)

    Article  ADS  Google Scholar 

  25. Tsimrin, L.S., Pikovsky, A.: Phys. Rev. Lett. 87, 250602 (2001)

    Article  ADS  Google Scholar 

  26. Masoller, C.: Phys. Rev. Lett. 88, 034102 (2002)

    Article  ADS  Google Scholar 

  27. Masoller, C.: Phys. Rev. Lett. 90, 020601 (2003)

    Article  ADS  Google Scholar 

  28. Pikovsky, A.S., Kurths, J.: Phys. Rev. Lett. 78, 775–778 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Zhang, J., Yuan, Z., Wang, J., Zhou, T.: Phys. Rev. E 77, 021101 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  30. Cabrera, J.L., Gorroñogoitia, J., de la Rubia, F.J.: Phys. Rev. E 66, 022101 (2002)

    Article  ADS  Google Scholar 

  31. Han, S.K., Yin, T.G., Postnov, V., Sosnovceva, O.V.: Phys. Rev. Lett. 83, 1771–1774 (1999)

    Article  ADS  Google Scholar 

  32. Kistler, W., Gerner, W., Van Hemmen, J.: Neural Comput. 9, 1015–1045 (1997)

    Article  Google Scholar 

  33. http://www.pitt.edu/~phase

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Burić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burić, N., Grozdanović, I., Todorović, K. et al. Influence of Coupling Delay on Noise Induced Coherent Oscillations in Excitable Systems. J Stat Phys 145, 175 (2011). https://doi.org/10.1007/s10955-011-0316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-011-0316-6

Keywords

Navigation