Skip to main content
Log in

A Microscopic Derivation of the Time-Dependent Hartree-Fock Equation with Coulomb Two-Body Interaction

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the dynamics of a Fermi gas with a Coulomb interaction potential, and show that, in a mean-field regime, the dynamics is described by the Hartree-Fock equation. This extends previous work of Bardos et al. [J. Math. Pures Appl. 82(6):665–683, 2003] to the case of unbounded interaction potentials. We also express the mean-field limit as a “superhamiltonian” system, and state our main result in terms of the Heisenberg-picture dynamics of observables. This is a Egorov-type theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach, V.: Error bound for the Hartree-Fock energy of atoms and molecules. Commun. Math. Phys. 147(3), 527–548 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bardos, C., Golse, F., Gottlieb, A.D., Mauser, J.: Mean-field dynamics of fermions and the time-dependent Hartree-Fock equation. J. Math. Pures Appl. 82(6), 665–683 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bove, A., Da Prato, G., Fano, G.: An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction. Commun. Math. Phys. 37, 183–191 (1974)

    Article  ADS  MATH  Google Scholar 

  4. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin (2002)

    Google Scholar 

  5. Chadam, J.M.: The time dependent Hartree-Fock equations with Coulomb two-body interaction. Commun. Math. Phys. 46, 99–104 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. 83, 1241–1273 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erdős, L., Salmhofer, M., Yau, H.-T.: On the quantum Boltzmann equation. J. Stat. Phys. 116, 367–380 (2004)

    Article  ADS  Google Scholar 

  8. Fefferman, C., Seco, L.: On the energy of a large atom. Bull. Am. Math. Soc., New Ser. 23(2), 525–530 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fefferman, C., Seco, L.: On the Dirac and Schwinger corrections to the ground energy of an atom. Adv. Math. 107(1), 1–185 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of bosons with Coulomb two-body interaction, math-ph/0805.4299v1

  11. Graf, G.M., Solovej, J.P.: A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6(5a), 977–997 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lieb, E.H., Loss, M.: Analysis. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  13. Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53(3), 185–194 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  14. Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23(1), 22–116 (1977)

    Article  MathSciNet  Google Scholar 

  15. Narnhofer, H., Sewell, G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79, 9–24 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  16. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, San Diego (1975)

    MATH  Google Scholar 

  17. Salmhofer, M.: Renormalization, An Introduction. Springer, Berlin (1999)

    MATH  Google Scholar 

  18. Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Zagatti, S.: The Cauchy problem for Hartree-Fock time-dependent equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 56, 357–374 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Knowles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, J., Knowles, A. A Microscopic Derivation of the Time-Dependent Hartree-Fock Equation with Coulomb Two-Body Interaction. J Stat Phys 145, 23 (2011). https://doi.org/10.1007/s10955-011-0311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-011-0311-y

Keywords

Navigation