Skip to main content
Log in

Flux Tempered Metadynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

There is considerable interest in developing methods for calculation of the free energy of fluids and materials from molecular simulations. Two prominent strategies, density-of-states sampling and “metadynamics,” seek to achieve uniform sampling of states through judicious addition of biasing potentials. In the particular case of metadynamics, a biasing potential is identified on the basis of one or more order parameters, and the convergence of a simulation is assessed by determining how regularly a given value of the order parameter is visited. That approach, however, can be of limited utility when the free energy curve exhibits multiple minima of disparate magnitude. In this work, we report a modified version of the original metadynamics algorithm that is based on maximization of round-trips (or flux) along the order parameter. The effectiveness of the proposed “flux tempered” approach is demonstrated in the context of two simple model systems, namely a pair of Lennard-Jones particles and a butane molecule. In both cases the flux tempered metadynamics method is significantly faster and more accurate than existing versions of metadynamics. While the method introduced in this work is presented in reference to metadynamics approaches, the ideas proposed here can be applied to assess the convergence of free-energy calculations in general, provided the applied weights are differentiable with respect to the Cartesian coordinates of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chipot, C., Pohorille, A.: Free Energy Calculations. Springer Series in Chemical Physics, vol. 86. Springer, Berlin (2007)

    Book  Google Scholar 

  2. Berg, B.A., Neuhaus, T.: Multicanonical algorithms for 1st order phase-transitions. Phys. Lett. B 267(2), 249–253 (1991)

    Article  ADS  Google Scholar 

  3. Gront, D., Kolinski, A., Skolnick, J.: Comparison of three Monte Carlo conformational search strategies for a proteinlike homopolymer model: folding thermodynamics and identification of low-energy structures. J. Chem. Phys. 113(12), 5065–5071 (2000)

    Article  ADS  Google Scholar 

  4. Sprik, M., Ciccotti, G.: Free energy from constrained molecular dynamics. J. Chem. Phys. 109(18), 7737–7744 (1998)

    Article  ADS  Google Scholar 

  5. Carter, E.A., Ciccotti, G., Hynes, J.T., Kapral, R.: Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156(5), 472–477 (1989)

    Article  ADS  Google Scholar 

  6. Hansmann, U.H.E., Okamoto, Y.: Monte Carlo simulations in generalized ensemble: multicanonical algorithm versus simulated tempering. Phys. Rev. E 54(5), 5863–5865 (1996)

    ADS  Google Scholar 

  7. Sugita, Y., Okamoto, Y.: Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape. Chem. Phys. Lett. 329(3–4), 261–270 (2000)

    Article  ADS  Google Scholar 

  8. Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.: Multidimensional free-energy calculations using the weighted histogram analysis method. J. Comput. Chem. 16(11), 1339–1350 (1995)

    Article  Google Scholar 

  9. Yan, Q.L., de Pablo, J.J.: Hyper-parallel tempering Monte Carlo: application to the Lennard-Jones fluid and the restricted primitive model. J. Chem. Phys. 111(21), 9509 (1999)

    Article  ADS  Google Scholar 

  10. Yan, Q.L., de Pablo, J.J.: Hyperparallel tempering Monte Carlo simulation of polymeric systems. J. Chem. Phys. 113(3), 1276–1282 (2000)

    Article  ADS  Google Scholar 

  11. Wang, F.G., Landau, D.P.: Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys. Rev. E 64(5), 056101 (2001)

    Article  ADS  Google Scholar 

  12. Wang, F.G., Landau, D.P.: Efficient multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86(10), 2050–2053 (2001)

    Article  ADS  Google Scholar 

  13. Rathore, N., Knotts, T.A., de Pablo, J.J.: Configurational temperature density of states simulations of proteins. Biophys. J. 85(6), 3963–3968 (2003)

    Article  Google Scholar 

  14. Yan, Q.L., Faller, R., de Pablo, J.J.: Density-of-states Monte Carlo method for simulation of fluids. J. Chem. Phys. 116(20), 8745 (2002)

    Article  ADS  Google Scholar 

  15. Yan, Q.L., de Pablo, J.J.: Fast calculation of the density of states of a fluid by Monte Carlo simulations. Phys. Rev. Lett. 90(3), 035701 (2003)

    Article  ADS  Google Scholar 

  16. Rathore, N., Knotts, T.A., de Pablo, J.J.: Density of states simulations of proteins. J. Chem. Phys. 118(9), 4285–4290 (2003)

    Article  ADS  Google Scholar 

  17. Kim, E.B., Guzman, O., Grollau, S., Abbott, N.L., de Pablo, J.J.: Interactions between spherical colloids mediated by a liquid crystal: a molecular simulation and mesoscale study. J. Chem. Phys. 121(4), 1949 (2004)

    Article  ADS  Google Scholar 

  18. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997)

    Article  ADS  Google Scholar 

  19. Yasar, F., Celik, T., Berg, B.A., Meirovitch, H.: Multicanonical procedure for continuum peptide models. J. Comput. Chem. 21(14), 1251–1261 (2000)

    Article  Google Scholar 

  20. Roux, B.: The calculation of the potential of mean force using computer-simulations. Comput. Phys. Commun. 91(1–3), 275–282 (1995)

    Article  ADS  Google Scholar 

  21. VandeVondele, J., Rothlisberger, U.: Efficient multidimensional free energy calculations for ab initio molecular dynamics using classical bias potentials. J. Chem. Phys. 113(12), 4863–4868 (2000)

    Article  ADS  Google Scholar 

  22. Gong, X.G., Wilkins, J.W.: Hyper molecular dynamics with a local bias potential. Phys. Rev. B 59(1), 54–57 (1999)

    Article  ADS  Google Scholar 

  23. Grubmuller, H.: Predicting slow structural transitions in macromolecular systems—conformational flooding. Phys. Rev. E 52(3), 2893–2906 (1995)

    ADS  Google Scholar 

  24. Darve, E., Pohorille, A.: Calculating free energies using average force. J. Chem. Phys. 115(20), 9169–9183 (2001)

    Article  ADS  Google Scholar 

  25. Huber, T., Torda, A.E., Van Gunsteren, W.F.: Local elevation—a method for improving the searching properties of molecular-dynamics simulation. J. Comput.-Aided Mol. Des. 8(6), 695–708 (1994)

    Article  ADS  Google Scholar 

  26. Dickson, B.M., Legoll, F., Lelievre, T., Stoltz, G., Fleurat-Lessard, P.: Free energy calculations: an efficient adaptive biasing potential method. J. Phys. Chem. B 114(17), 5823–5830 (2010)

    Article  Google Scholar 

  27. Lelièvre, T., Rousset, M., Stoltz, G.: Computation of free energy profiles with parallel adaptive dynamics. J. Chem. Phys. 126(13), 134111 (2007)

    Article  ADS  Google Scholar 

  28. Lelièvre, T., Rousset, M.G.S.: Free Energy Computations: A Mathematical Perspective. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  29. Lyubartsev, A.P., Martsinovski, A.A., Shevkunov, S.V., Vorontsov-Velyaminov, P.N.: New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J. Chem. Phys. 96(3), 1776–1783 (1992)

    Article  ADS  Google Scholar 

  30. Escobedo, F.A., de Pablo, J.J.: Expanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers. J. Chem. Phys. 105(10), 4391–4394 (1996)

    Article  ADS  Google Scholar 

  31. Escobedo, F.A., Martinez-Veracoechea, F.J.: Optimized expanded ensembles for simulations involving molecular insertions and deletions. I. Closed systems. J. Chem. Phys. 127(17), 174103 (2007)

    Article  ADS  Google Scholar 

  32. Escobedo, F.A., Martinez-Veracoechea, F.J.: Optimization of expanded ensemble methods. J. Chem. Phys. 129(15), 154107 (2008)

    Article  ADS  Google Scholar 

  33. Janosi, L., Doxastakis, M.: Accelerating flat-histogram methods for potential of mean force calculations. J. Chem. Phys. 131(5), 054105 (2009)

    Article  ADS  Google Scholar 

  34. Morozov, A.N., Lin, S.H.: Accuracy and convergence of the Wang-Landau sampling algorithm. Phys. Rev. E 76(2), 026701 (2007)

    ADS  Google Scholar 

  35. Micheletti, C., Laio, A., Parrinello, M.: Reconstructing the density of states by history-dependent metadynamics. Phys. Rev. Lett. 92(17), 170601 (2004)

    Article  ADS  Google Scholar 

  36. Laio, A., Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99(20), 12562–12566 (2002)

    Article  ADS  Google Scholar 

  37. Laio, A., Gervasio, F.L.: Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71(12), 126601 (2008)

    Article  ADS  Google Scholar 

  38. Iannuzzi, M., Laio, A., Parrinello, M.: Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys. Rev. Lett. 90(23), 238302 (2003)

    Article  ADS  Google Scholar 

  39. Ceccarelli, M., Danelon, C., Laio, A., Parrinello, M.: Microscopic mechanism of antibiotics translocation through a porin. Biophys. J. 87(1), 58–64 (2004)

    Article  ADS  Google Scholar 

  40. Ensing, B., Laio, A., Gervasio, F.L., Parrinello, M., Klein, M.L.: A minimum free energy reaction path for the E2 reaction between fluoro ethane and a fluoride ion. J. Am. Chem. Soc. 126(31), 9492–9493 (2004)

    Article  Google Scholar 

  41. Stirling, A., Iannuzzi, M., Laio, A., Parrinello, M.: Azulene-to-naphthalene rearrangement: the Car-Parrinello metadynamics method explores various mechanisms. Chem. Phys. Chem. 5(10), 1558–1568 (2004)

    Article  Google Scholar 

  42. Babin, V., Roland, C., Darden, T.A., Sagui, C.: The free energy landscape of small peptides as obtained from metadynamics with umbrella sampling corrections. J. Chem. Phys. 125(20), 204909 (2006)

    Article  ADS  Google Scholar 

  43. Bussi, G., Gervasio, F.L., Laio, A., Parrinello, M.: Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 128(41), 13435–13441 (2006)

    Article  Google Scholar 

  44. Piana, S., Laio, A.: A bias-exchange approach to protein folding. J. Phys. Chem. B 111(17), 4553–4559 (2007)

    Article  Google Scholar 

  45. Laio, A., Rodriguez-Fortea, A., Gervasio, F.L., Ceccarelli, M., Parrinello, M.: Assessing the accuracy of metadynamics. J. Phys. Chem. B 109(14), 6714–6721 (2005)

    Article  Google Scholar 

  46. Gervasio, F.L., Laio, A., Parrinello, M.: Flexible docking in solution using metadynamics. J. Am. Chem. Soc. 127(8), 2600–2607 (2005)

    Article  Google Scholar 

  47. Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100(2), 020603 (2008)

    Article  ADS  Google Scholar 

  48. Ensing, B., Klein, M.L.: Perspective on the reactions between F and CH3CH2F: the free energy landscape of the E2 and SN2 reaction channels. Proc. Natl. Acad. Sci. USA 102(19), 6755–6759 (2005)

    Article  ADS  Google Scholar 

  49. Wu, Y.D., Schmitt, J.D., Car, R.: Mapping potential energy surfaces. J. Chem. Phys. 121(3), 1193–1200 (2004)

    Article  ADS  Google Scholar 

  50. Bonomi, M., Parrinello, M.: Enhanced sampling in the well-tempered ensemble. Phys. Rev. Lett. 104(19), 190601 (2010)

    Article  ADS  Google Scholar 

  51. Min, D.H., Liu, Y.S., Carbone, I., Yang, W.: On the convergence improvement in the metadynamics simulations: a Wang-Landau recursion approach. J. Chem. Phys. 126(19), 194104 (2007)

    Article  ADS  Google Scholar 

  52. Marsili, S., Barducci, A., Chelli, R., Procacci, P., Schettino, V.: Self-healing umbrella sampling: a non-equilibrium approach for quantitative free energy calculations. J. Phys. Chem. B 110(29), 14011–14013 (2006)

    Article  Google Scholar 

  53. Trebst, S., Huse, D.A., Troyer, M.: Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations. Phys. Rev. E 70(4), 046701 (2004)

    ADS  Google Scholar 

  54. Dayal, P., Trebst, S., Wessel, S., Wurtz, D., Troyer, M., Sabhapandit, S., Coppersmith, S.N.: Performance limitations of flat-histogram methods. Phys. Rev. Lett. 92(9), 097201 (2004)

    Article  ADS  Google Scholar 

  55. Hoover, W.G.: Canonical dynamics—equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985)

    Article  ADS  Google Scholar 

  56. Martyna, G.J., Klein, M.L., Tuckerman, M.: Nose-Hoover chains—the canonical ensemble via continuous dynamics. J. Chem. Phys. 97(4), 2635–2643 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. de Pablo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Chiu, Cc. & de Pablo, J.J. Flux Tempered Metadynamics. J Stat Phys 145, 932–945 (2011). https://doi.org/10.1007/s10955-011-0301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0301-0

Keywords

Navigation