Advertisement

Journal of Statistical Physics

, Volume 145, Issue 4, pp 932–945 | Cite as

Flux Tempered Metadynamics

  • Sadanand Singh
  • Chi-cheng Chiu
  • Juan J. de PabloEmail author
Article

Abstract

There is considerable interest in developing methods for calculation of the free energy of fluids and materials from molecular simulations. Two prominent strategies, density-of-states sampling and “metadynamics,” seek to achieve uniform sampling of states through judicious addition of biasing potentials. In the particular case of metadynamics, a biasing potential is identified on the basis of one or more order parameters, and the convergence of a simulation is assessed by determining how regularly a given value of the order parameter is visited. That approach, however, can be of limited utility when the free energy curve exhibits multiple minima of disparate magnitude. In this work, we report a modified version of the original metadynamics algorithm that is based on maximization of round-trips (or flux) along the order parameter. The effectiveness of the proposed “flux tempered” approach is demonstrated in the context of two simple model systems, namely a pair of Lennard-Jones particles and a butane molecule. In both cases the flux tempered metadynamics method is significantly faster and more accurate than existing versions of metadynamics. While the method introduced in this work is presented in reference to metadynamics approaches, the ideas proposed here can be applied to assess the convergence of free-energy calculations in general, provided the applied weights are differentiable with respect to the Cartesian coordinates of the system.

Keywords

Metadynamics Round-trip maximization Convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chipot, C., Pohorille, A.: Free Energy Calculations. Springer Series in Chemical Physics, vol. 86. Springer, Berlin (2007) CrossRefGoogle Scholar
  2. 2.
    Berg, B.A., Neuhaus, T.: Multicanonical algorithms for 1st order phase-transitions. Phys. Lett. B 267(2), 249–253 (1991) ADSCrossRefGoogle Scholar
  3. 3.
    Gront, D., Kolinski, A., Skolnick, J.: Comparison of three Monte Carlo conformational search strategies for a proteinlike homopolymer model: folding thermodynamics and identification of low-energy structures. J. Chem. Phys. 113(12), 5065–5071 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    Sprik, M., Ciccotti, G.: Free energy from constrained molecular dynamics. J. Chem. Phys. 109(18), 7737–7744 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    Carter, E.A., Ciccotti, G., Hynes, J.T., Kapral, R.: Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156(5), 472–477 (1989) ADSCrossRefGoogle Scholar
  6. 6.
    Hansmann, U.H.E., Okamoto, Y.: Monte Carlo simulations in generalized ensemble: multicanonical algorithm versus simulated tempering. Phys. Rev. E 54(5), 5863–5865 (1996) ADSGoogle Scholar
  7. 7.
    Sugita, Y., Okamoto, Y.: Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape. Chem. Phys. Lett. 329(3–4), 261–270 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.: Multidimensional free-energy calculations using the weighted histogram analysis method. J. Comput. Chem. 16(11), 1339–1350 (1995) CrossRefGoogle Scholar
  9. 9.
    Yan, Q.L., de Pablo, J.J.: Hyper-parallel tempering Monte Carlo: application to the Lennard-Jones fluid and the restricted primitive model. J. Chem. Phys. 111(21), 9509 (1999) ADSCrossRefGoogle Scholar
  10. 10.
    Yan, Q.L., de Pablo, J.J.: Hyperparallel tempering Monte Carlo simulation of polymeric systems. J. Chem. Phys. 113(3), 1276–1282 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    Wang, F.G., Landau, D.P.: Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys. Rev. E 64(5), 056101 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    Wang, F.G., Landau, D.P.: Efficient multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86(10), 2050–2053 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    Rathore, N., Knotts, T.A., de Pablo, J.J.: Configurational temperature density of states simulations of proteins. Biophys. J. 85(6), 3963–3968 (2003) CrossRefGoogle Scholar
  14. 14.
    Yan, Q.L., Faller, R., de Pablo, J.J.: Density-of-states Monte Carlo method for simulation of fluids. J. Chem. Phys. 116(20), 8745 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    Yan, Q.L., de Pablo, J.J.: Fast calculation of the density of states of a fluid by Monte Carlo simulations. Phys. Rev. Lett. 90(3), 035701 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    Rathore, N., Knotts, T.A., de Pablo, J.J.: Density of states simulations of proteins. J. Chem. Phys. 118(9), 4285–4290 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    Kim, E.B., Guzman, O., Grollau, S., Abbott, N.L., de Pablo, J.J.: Interactions between spherical colloids mediated by a liquid crystal: a molecular simulation and mesoscale study. J. Chem. Phys. 121(4), 1949 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    Yasar, F., Celik, T., Berg, B.A., Meirovitch, H.: Multicanonical procedure for continuum peptide models. J. Comput. Chem. 21(14), 1251–1261 (2000) CrossRefGoogle Scholar
  20. 20.
    Roux, B.: The calculation of the potential of mean force using computer-simulations. Comput. Phys. Commun. 91(1–3), 275–282 (1995) ADSCrossRefGoogle Scholar
  21. 21.
    VandeVondele, J., Rothlisberger, U.: Efficient multidimensional free energy calculations for ab initio molecular dynamics using classical bias potentials. J. Chem. Phys. 113(12), 4863–4868 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    Gong, X.G., Wilkins, J.W.: Hyper molecular dynamics with a local bias potential. Phys. Rev. B 59(1), 54–57 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    Grubmuller, H.: Predicting slow structural transitions in macromolecular systems—conformational flooding. Phys. Rev. E 52(3), 2893–2906 (1995) ADSGoogle Scholar
  24. 24.
    Darve, E., Pohorille, A.: Calculating free energies using average force. J. Chem. Phys. 115(20), 9169–9183 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    Huber, T., Torda, A.E., Van Gunsteren, W.F.: Local elevation—a method for improving the searching properties of molecular-dynamics simulation. J. Comput.-Aided Mol. Des. 8(6), 695–708 (1994) ADSCrossRefGoogle Scholar
  26. 26.
    Dickson, B.M., Legoll, F., Lelievre, T., Stoltz, G., Fleurat-Lessard, P.: Free energy calculations: an efficient adaptive biasing potential method. J. Phys. Chem. B 114(17), 5823–5830 (2010) CrossRefGoogle Scholar
  27. 27.
    Lelièvre, T., Rousset, M., Stoltz, G.: Computation of free energy profiles with parallel adaptive dynamics. J. Chem. Phys. 126(13), 134111 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    Lelièvre, T., Rousset, M.G.S.: Free Energy Computations: A Mathematical Perspective. Imperial College Press, London (2010) zbMATHCrossRefGoogle Scholar
  29. 29.
    Lyubartsev, A.P., Martsinovski, A.A., Shevkunov, S.V., Vorontsov-Velyaminov, P.N.: New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J. Chem. Phys. 96(3), 1776–1783 (1992) ADSCrossRefGoogle Scholar
  30. 30.
    Escobedo, F.A., de Pablo, J.J.: Expanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers. J. Chem. Phys. 105(10), 4391–4394 (1996) ADSCrossRefGoogle Scholar
  31. 31.
    Escobedo, F.A., Martinez-Veracoechea, F.J.: Optimized expanded ensembles for simulations involving molecular insertions and deletions. I. Closed systems. J. Chem. Phys. 127(17), 174103 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    Escobedo, F.A., Martinez-Veracoechea, F.J.: Optimization of expanded ensemble methods. J. Chem. Phys. 129(15), 154107 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    Janosi, L., Doxastakis, M.: Accelerating flat-histogram methods for potential of mean force calculations. J. Chem. Phys. 131(5), 054105 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    Morozov, A.N., Lin, S.H.: Accuracy and convergence of the Wang-Landau sampling algorithm. Phys. Rev. E 76(2), 026701 (2007) ADSGoogle Scholar
  35. 35.
    Micheletti, C., Laio, A., Parrinello, M.: Reconstructing the density of states by history-dependent metadynamics. Phys. Rev. Lett. 92(17), 170601 (2004) ADSCrossRefGoogle Scholar
  36. 36.
    Laio, A., Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99(20), 12562–12566 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    Laio, A., Gervasio, F.L.: Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71(12), 126601 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    Iannuzzi, M., Laio, A., Parrinello, M.: Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys. Rev. Lett. 90(23), 238302 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    Ceccarelli, M., Danelon, C., Laio, A., Parrinello, M.: Microscopic mechanism of antibiotics translocation through a porin. Biophys. J. 87(1), 58–64 (2004) ADSCrossRefGoogle Scholar
  40. 40.
    Ensing, B., Laio, A., Gervasio, F.L., Parrinello, M., Klein, M.L.: A minimum free energy reaction path for the E2 reaction between fluoro ethane and a fluoride ion. J. Am. Chem. Soc. 126(31), 9492–9493 (2004) CrossRefGoogle Scholar
  41. 41.
    Stirling, A., Iannuzzi, M., Laio, A., Parrinello, M.: Azulene-to-naphthalene rearrangement: the Car-Parrinello metadynamics method explores various mechanisms. Chem. Phys. Chem. 5(10), 1558–1568 (2004) CrossRefGoogle Scholar
  42. 42.
    Babin, V., Roland, C., Darden, T.A., Sagui, C.: The free energy landscape of small peptides as obtained from metadynamics with umbrella sampling corrections. J. Chem. Phys. 125(20), 204909 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    Bussi, G., Gervasio, F.L., Laio, A., Parrinello, M.: Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 128(41), 13435–13441 (2006) CrossRefGoogle Scholar
  44. 44.
    Piana, S., Laio, A.: A bias-exchange approach to protein folding. J. Phys. Chem. B 111(17), 4553–4559 (2007) CrossRefGoogle Scholar
  45. 45.
    Laio, A., Rodriguez-Fortea, A., Gervasio, F.L., Ceccarelli, M., Parrinello, M.: Assessing the accuracy of metadynamics. J. Phys. Chem. B 109(14), 6714–6721 (2005) CrossRefGoogle Scholar
  46. 46.
    Gervasio, F.L., Laio, A., Parrinello, M.: Flexible docking in solution using metadynamics. J. Am. Chem. Soc. 127(8), 2600–2607 (2005) CrossRefGoogle Scholar
  47. 47.
    Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100(2), 020603 (2008) ADSCrossRefGoogle Scholar
  48. 48.
    Ensing, B., Klein, M.L.: Perspective on the reactions between F and CH3CH2F: the free energy landscape of the E2 and SN2 reaction channels. Proc. Natl. Acad. Sci. USA 102(19), 6755–6759 (2005) ADSCrossRefGoogle Scholar
  49. 49.
    Wu, Y.D., Schmitt, J.D., Car, R.: Mapping potential energy surfaces. J. Chem. Phys. 121(3), 1193–1200 (2004) ADSCrossRefGoogle Scholar
  50. 50.
    Bonomi, M., Parrinello, M.: Enhanced sampling in the well-tempered ensemble. Phys. Rev. Lett. 104(19), 190601 (2010) ADSCrossRefGoogle Scholar
  51. 51.
    Min, D.H., Liu, Y.S., Carbone, I., Yang, W.: On the convergence improvement in the metadynamics simulations: a Wang-Landau recursion approach. J. Chem. Phys. 126(19), 194104 (2007) ADSCrossRefGoogle Scholar
  52. 52.
    Marsili, S., Barducci, A., Chelli, R., Procacci, P., Schettino, V.: Self-healing umbrella sampling: a non-equilibrium approach for quantitative free energy calculations. J. Phys. Chem. B 110(29), 14011–14013 (2006) CrossRefGoogle Scholar
  53. 53.
    Trebst, S., Huse, D.A., Troyer, M.: Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations. Phys. Rev. E 70(4), 046701 (2004) ADSGoogle Scholar
  54. 54.
    Dayal, P., Trebst, S., Wessel, S., Wurtz, D., Troyer, M., Sabhapandit, S., Coppersmith, S.N.: Performance limitations of flat-histogram methods. Phys. Rev. Lett. 92(9), 097201 (2004) ADSCrossRefGoogle Scholar
  55. 55.
    Hoover, W.G.: Canonical dynamics—equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985) ADSCrossRefGoogle Scholar
  56. 56.
    Martyna, G.J., Klein, M.L., Tuckerman, M.: Nose-Hoover chains—the canonical ensemble via continuous dynamics. J. Chem. Phys. 97(4), 2635–2643 (1992) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sadanand Singh
    • 1
  • Chi-cheng Chiu
    • 1
  • Juan J. de Pablo
    • 1
    Email author
  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations