Skip to main content
Log in

Time-Scales to Equipartition in the Fermi–Pasta–Ulam Problem: Finite-Size Effects and Thermodynamic Limit

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate numerically the common α+β and the pure β FPU models, as well as some higher order generalizations. We consider initial conditions in which only low-frequency normal modes are excited, and perform a very accurate systematic study of the equilibrium time as a function of the number N of particles, the specific energy ε, and the parameters α and β. While at any fixed N the equilibrium time is found to be a stretched exponential in 1/ε, in the thermodynamic limit, i.e. for N→∞ at fixed ε, we observe a crossover to a power law. Concerning the (usually disregarded) dependence of T eq on α and β, we find it is nontrivial, and propose and test a general law. A central role is played by the comparison of the FPU models with the Toda model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fermi, E., Pasta, J., Ulam, S.: Studies of non linear problems, Los-Alamos internal report, Document LA-1940 (1955). In: Enrico Fermi Collected Papers, vol. II, pp. 977–988. The University of Chicago Press, and Accademia Nazionale dei Lincei, Chicago and Roma (1965). (Also reproduced in Ref. [3])

    Google Scholar 

  2. Chaos focus issue: The “Fermi–Pasta–Ulam” problem—the first 50 years. Chaos 15 (2005)

  3. Gallavotti, G. (ed.): The Fermi–Pasta–Ulam Problem: A Status Report. Lect. Notes Phys., vol. 728. Springer, Berlin-Heidelberg (2008)

    MATH  Google Scholar 

  4. Benettin, G., Carati, A., Galgani, L., Giorgilli, A.: The Fermi–Pasta–Ulam problem and the metastability perspective. In: Gallavotti, G. (ed.) The Fermi–Pasta–Ulam Problem: A Status Report. Lect. Notes Phys., vol. 728, pp. 151–189. Springer, Berlin-Heidelberg (2008)

    Google Scholar 

  5. Benettin, G., Livi, R., Ponno, A.: The Fermi–Pasta–Ulam problem: scaling laws vs. initial conditions. J. Stat. Phys. 135, 873–893 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Fucito, E., Marchesoni, F., Marinari, E., Parisi, G., Peliti, L., Ruffo, S., Vulpiani, A.: Approach to equilibrium in a chain of nonlinear oscillators. J. Phys. (Paris) 43, 707–713 (1982)

    MathSciNet  Google Scholar 

  7. Livi, R., Pettini, M., Ruffo, S., Sparpaglione, M., Vulpiani, A.: Relaxation to different stationary states in the Fermi–Pasta–Ulam model. Phys. Rev. A 28, 3544–3552 (1983)

    Article  ADS  Google Scholar 

  8. De Luca, J., Lichtenberg, A.J., Ruffo, S.: Finite times to equipartition in the thermodynamic limit. Phys. Rev. E 60, 3781–3786 (1999)

    Article  ADS  Google Scholar 

  9. Berchialla, L., Galgani, L., Giorgilli, A.: Localization of energy in FPU chains. Discrete Contin. Dyn. Syst. 11, 855–866 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berchialla, L., Giorgilli, A., Paleari, S.: Exponentially long times to equipartition in the thermodynamic limit. Phys. Lett. A 321, 167–172 (2004)

    Article  ADS  MATH  Google Scholar 

  11. Bambusi, D., Ponno, A.: Resonance, metastability and blow-up in FPU. In: Gallavotti, G. (ed.) The Fermi–Pasta–Ulam Problem: A Status Report. Lect. Notes Phys., vol. 728, pp. 191–205. Springer, Berlin-Heidelberg (2008)

    Google Scholar 

  12. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–245 (1965)

    Article  ADS  MATH  Google Scholar 

  13. Ferguson, E.E., Flashka, H., McLaughlin, D.W.: Nonlinear Toda modes for the Toda chain. J. Comput. Phys. 45, 157–209 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Casetti, L., Cerruti–Sola, M., Pettini, M., Cohen, E.D.G.: The Fermi–Pasta–Ulam problem revisited: stochasticity thresholds in nonlinear Hamiltonian systems. Phys. Rev. E 55, 6566–6574 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  15. Ponno, A., Christodoulidi, H., Flach, S., Skokos, H.: The two-stage dynamics in the Fermi–Pasta–Ulam problem: from regular to diffusive behavior. Preprint (2011)

  16. Livi, R., Pettini, M., Ruffo, S., Sparpaglione, M., Vulpiani, A.: Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi–Pasta–Ulam model. Phys. Rev. A 31, 1039–1045 (1985)

    Article  ADS  Google Scholar 

  17. Goedde, C.G., Lichtenberg, A.J., Lieberman, M.A.: Physica D 59, 200 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  19. Paleari, S., Penati, T.: Numerical methods and results in the FPU problem. In: Gallavotti, G. (Ed.) The Fermi–Pasta–Ulam Problem. Lect. Notes Phys., vol. 728, pp. 239–282. Springer, Berlin-Heidelberg (2008)

    Google Scholar 

  20. Benettin, G., Ponno, A.: On the numerical integration of FPU-like systems. Physica D 240, 568–573 (2011). doi:10.1016/jphysd.2010.11.008

    Article  ADS  MATH  Google Scholar 

  21. Carati, A., Galgani, L., Giorgilli, A., Paleari, S.: FPU phenomenon for generic initial data. Phys. Rev. E 76, 022104/1–4 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. Carati, A., Galgani, L., Giorgilli, A.: The Fermi–Pasta–Ulam problem as a challenge for the foundations of physics. Chaos 15 (2005)

  23. Rink, B.: Proof of Nishida’s conjecture on anharmonic lattices. Commun. Math. Phys. 261, 613–627 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Bambusi, D., Giorgilli, A.: Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems. J. Stat. Phys. 71, 569–606 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  25. Carati, A.: An averaging theorem for Hamiltonian dynamical systems in the thermodynamic limit. J. Stat. Phys. 128, 1057–1077 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Carati, A., Maiocchi, A.: Exponentially long stability times for a nonlinear lattice in the thermodynamic limit (2011). Preprint arXiv:1011.5846v1 [math-ph]

  27. Benettin, G.: Time-scale for energy equipartition in a two-dimensional FPU model. Chaos 15, 15105/1–8 (2005)

    Article  MathSciNet  Google Scholar 

  28. Benettin, G., Gradenigo, G.: A study of the Fermi–Pasta–Ulam problem in dimension two. Chaos 18, 013112/1–13 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Benettin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benettin, G., Ponno, A. Time-Scales to Equipartition in the Fermi–Pasta–Ulam Problem: Finite-Size Effects and Thermodynamic Limit. J Stat Phys 144, 793–812 (2011). https://doi.org/10.1007/s10955-011-0277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0277-9

Keywords

Navigation