Skip to main content
Log in

Gamow Vectors and Borel Summability in a Class of Quantum Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyze the detailed time dependence of the wave function ψ(x,t) for one dimensional Hamiltonians \(H=-\partial_{x}^{2}+V(x)\) where V (for example modeling barriers or wells) and ψ(x,0) are compactly supported.

We show that the dispersive part of ψ(x,t) is the Borel sum of its asymptotic series in powers of t −1/2, t→∞. The remainder, the difference between ψ and the Borel sum, i.e., the exponential part of the transseries of ψ, is a convergent expansion of the form \(\sum_{k=0}^{\infty}g_{k}\Gamma_{k}(x)e^{-\gamma_{k} t}\), where Γ k are the Gamow vectors of H, and k are the associated resonances; generically, all g k are nonzero. For large k, γ k ∼const⋅klog k+k 2 π 2 i/4. The effect of the Gamow vectors is visible when time is not very large, and the decomposition defines rigorously resonances and Gamow vectors in a nonperturbative regime, in a physically relevant way.

The decomposition allows for calculating ψ for moderate and large t, to any prescribed exponential accuracy, using optimal truncation of power series plus finitely many Gamow vectors contributions.

The analytic structure of ψ is perhaps surprising: in general (even in simple examples such as square wells), ψ(x,t) turns out to be C in t but nowhere analytic on ℝ+. In fact, ψ is t-analytic in a sector in the lower half plane and has the whole of ℝ+ a natural boundary. In the dual space, we analyze the resurgent structure of ψ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Hegh-Krohn, R.: The resonance expansion for the Green’s function of the Schrödinger and wave equations. In: Resonances Models and Phenomena, Springer Lecture Notes in Physics, vol. 211, pp. 105–127. Springer, Berlin (1984)

    Chapter  Google Scholar 

  2. Balser, W., Braaksma, B.L.J., Ramis, J.-P., Sibuya, Y.: Multisummability of formal power series solutions of ordinary differential equations. Asymptot. Anal. 5, 27–45 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Bambusi, D., Graffi, S., Paul, T.: Long time semiclassical approximation of quantum flows: a proof of the Ehrenfest time. Asymptot. Anal. 21, 149–160 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Berry, M.V., Howls, C.J.: Hyperasymptotics. Proc. R. Soc. Lond. A 430, 653–668 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential. Commun. Math. Phys. 204(1), 207–240 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bourgain, J.: On growth of Sobolev norms in linear Schrödinger equations with smooth time-dependent potential. J. Anal. Math. 77, 315–348 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain, J.: On long-time behaviour of solutions of linear Schrödinger equations with smooth time-dependent potential. In: Geometric Aspects of Functional Analysis, Lecture Notes in Math., vol. 1807, pp. 99–113. Springer, Berlin (2003)

    Chapter  Google Scholar 

  9. Braaksma, B.L.J.: Transseries for a class of nonlinear difference equations. J. Differ. Equ. Appl. 7(5), 717–750 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braaksma, B.L.J., Kuik, R.: Resurgence relations for classes of differential and difference equations. Ann. Fac. Sci. Toulouse Math. 13, 479–492 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christiansen, T.J.: Schrödinger operators and the distribution of resonances in sectors (submitted). arxiv:1012.3767 [math.SP]

  12. Christiansen, T.J., Hislop, P.D.: Resonances for Schrödinger operators with compactly supported potentials. In Journees Equations aux derivees partielles, Evian, 2–6 June 2008

  13. Combescure, M., Robert, D.: Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow. Asymptot. Anal. 14, 377–404 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Costin, O.: On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations. Duke Math. J. 93, 2 (1998)

    Article  MathSciNet  Google Scholar 

  15. Costin, O.: Asymptotics and Borel Summability. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  16. Costin, O., Costin, R.D.: On the location and type of singularities of nonlinear differential systems. Invent. Math. 145(3), 425–485 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Costin, O., Kruskal, M.D.: On optimal truncation of divergent series solutions of nonlinear differential systems, Berry smoothing. Proc. R. Soc. Lond. A 455, 1931–1956 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Costin, O., Soffer, A.: Resonance theory for Schrodinger operators. Commun. Math. Phys. 224(1), 133–152 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Costin, O., Tanveer, S.: Nonlinear evolution PDEs in ℝ+×ℂd: existence and uniqueness of solutions, asymptotic and Borel summability properties, Ann. Inst. H. Poincaré Anal. Non Linéaire (2006)

  20. Écalle, J.: In: Bifurcations and Periodic Orbits of Vector Fields. NATO ASI Series, vol. 408 (1993)

    Google Scholar 

  21. Froese, R.: Asymptotic distribution of resonances in one dimension. J. Differ. Equ. 137(2), 251–272 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. García-Calderón, G., Peierls, R.: Resonant states and their uses. Nucl. Phys. A 265, 463–460 (1976)

    Article  ADS  Google Scholar 

  23. Garrido, P., Goldstein, S., Lukkarinen, J., Tumulka, R.: Paradoxical reflection in quantum mechanics. arXiv:0808.0610

  24. Goldberg, M.: Strichartz estimates for the Schrödinger equation with time-periodic L n/2 potentials. J. Funct. Anal. 256(3), 718–746 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hagedorn, G.A., Joye, A.: Semiclassical dynamics with exponentially small error estimates. Commun. Math. Phys. 207, 439–465 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Herbst, I., Möller, J.S., Skibsted, E.: Asymptotic completeness for N-body Stark Hamiltonians. Commun. Math. Phys. 174(3), 509–535 (1996)

    Article  ADS  MATH  Google Scholar 

  27. Hille, E.: Ordinary Differential Equations in the Complex Domain. Dover, New York (1997)

    MATH  Google Scholar 

  28. Huang, M.: Gamow vectors in a periodically perturbed quantum system. J. Stat. Phys. 137, 569–592 (2009). doi:10.1007/s10955-009-9853-7

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. de la Madrid, R., Gadella, M.: A pedestrian introduction to Gamow vectors. Am. J. Phys. 70(6), 626–638 (2002)

    Article  ADS  MATH  Google Scholar 

  30. Mandelbrojt, S.: Séries Lacunaires. Actualités Scientifiques et Industrielles, vol. 305. Hermann, Paris (1936)

    Google Scholar 

  31. Möller, J.S., Skibsted, E.: Spectral theory of time-periodic many-body systems. Adv. Math. 188(1), 137–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Newton, R.G.: Scattering Theory of Waves and Particles. McGraw Hill, New York (1966)

    Google Scholar 

  33. Olde Daalhuis, A.B.: Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. R. Soc., Math. Phys. Eng. Sci. 454(1968), 1–29 (1998) (see also note at http://www.maths.ed.ac.uk/~adri/public.html)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Academic Press, New York (1972)

    MATH  Google Scholar 

  35. Schlag, W., Rodnianski, I.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 3, 451–513 (2004)

    MathSciNet  Google Scholar 

  36. Simon, B.: Resonances in one dimension and Fredholm determinants. J. Funct. Anal. 178(2), 396–420 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Skibsted, E.: Truncated Gamow functions, adecay and the exponential decay law. Commun. Math. Phys. 104(4), 591–604 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Soffer, A., Weinstein, M.I.: Time dependent resonance theory. Geom. Funct. Anal. 8, 1086–1128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stefanov, P.: Sharp bounds on the number of the scattering poles. J. Funct. Anal. 231(1), 111–142 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vodev, G.: Resonances in Euclidean scattering. Cubo Mat. Educ. 3(1), 319–360 (2001)

    Google Scholar 

  41. Yajima, K.: Gevrey frequency set and semi-classical behavior of wave packets. In: Balslev, E. (ed.) Schrödinger Operators, The Quantum Mechanical Many Body Problem. Lecture Notes in Physics, vol. 403, pp. 248–264. Springer, Berlin (1992)

    Chapter  Google Scholar 

  42. Zworski, M.: Distribution of poles for scattering on the real line. J. Funct. Anal. 73(2), 277–296 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costin, O., Huang, M. Gamow Vectors and Borel Summability in a Class of Quantum Systems. J Stat Phys 144, 846–871 (2011). https://doi.org/10.1007/s10955-011-0276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0276-x

Keywords

Navigation