Skip to main content

Dynamic Critical Behavior of the Chayes–Machta Algorithm for the Random-Cluster Model, I. Two Dimensions

Abstract

We study, via Monte Carlo simulation, the dynamic critical behavior of the Chayes–Machta dynamics for the Fortuin–Kasteleyn random-cluster model, which generalizes the Swendsen–Wang dynamics for the q-state Potts ferromagnet to non-integer q≥1. We consider spatial dimension d=2 and 1.25≤q≤4 in steps of 0.25, on lattices up to 10242, and obtain estimates for the dynamic critical exponent z CM. We present evidence that when 1≤q≲1.95 the Ossola–Sokal conjecture z CMβ/ν is violated, though we also present plausible fits compatible with this conjecture. We show that the Li–Sokal bound z CMα/ν is close to being sharp over the entire range 1≤q≤4, but is probably non-sharp by a power. As a byproduct of our work, we also obtain evidence concerning the corrections to scaling in static observables.

This is a preview of subscription content, access via your institution.

References

  1. Binder, K. (ed.): Monte Carlo Methods in Statistical Physics, 2nd edn. Springer, Berlin (1986)

    MATH  Google Scholar 

  2. Binder, K. (ed.): Applications of the Monte Carlo Method in Statistical Physics, 2nd edn. Springer, Berlin (1987)

    Google Scholar 

  3. Binder, K. (ed.): The Monte Carlo Method in Condensed Matter Physics, 2nd edn. Springer, Berlin (1995)

    Google Scholar 

  4. Hohenberg, P.C., Halperin, B.I.: Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  5. Sokal, A.D.: Monte Carlo methods in statistical mechanics: foundations and new algorithms. In: DeWitt-Morette, C., Cartier, P., Folacci, A. (eds.) Functional Integration: Basics and Applications, 1996 Cargèse Summer School, pp. 131–192. Plenum, New York (1997)

    Google Scholar 

  6. Swendsen, R.H., Wang, J.-S.: Phys. Rev. Lett. 58, 86 (1987)

    Article  ADS  Google Scholar 

  7. Potts, R.B.: Proc. Camb. Philos. Soc. 48, 106 (1952)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Wu, F.Y.: Rev. Mod. Phys. 54, 235 (1982). Erratum: 55, 315 (1983)

    Article  ADS  Google Scholar 

  9. Wu, F.Y.: J. Appl. Phys. 55, 2421 (1984)

    Article  ADS  Google Scholar 

  10. Kasteleyn, P.W., Fortuin, C.M.: J. Phys. Soc. Jpn. 26 (Suppl.), 11 (1969)

    ADS  Google Scholar 

  11. Fortuin, C.M., Kasteleyn, P.W.: Physica 57, 536 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  12. Fortuin, C.M.: Physica 58, 393 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  13. Fortuin, C.M.: Physica 59, 545 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  14. Edwards, R.G., Sokal, A.D.: Phys. Rev. D 38, 2009 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  15. Grimmett, G.: The Random-Cluster Model. Springer, New York (2006)

    Book  MATH  Google Scholar 

  16. Salas, J., Sokal, A.D.: Universal amplitude ratios in the critical two-dimensional Ising model on a torus. cond-mat/9904038v1. For space reasons, this material was deleted from the published version of this paper [J. Stat. Phys. 98, 551 (2000)]

  17. Salas, J., Sokal, A.D.: J. Stat. Phys. 87, 1 (1997). hep-lat/9605018

    Article  ADS  MATH  Google Scholar 

  18. Salas, J., Sokal, A.D.: J. Stat. Phys. 85, 297 (1996). hep-lat/9511022

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Salas, J., Sokal, A.D.: J. Stat. Phys. 88, 567 (1997). hep-lat/9607030

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Ossola, G., Sokal, A.D.: Nucl. Phys. B 691, 259 (2004). hep-lat/0402019

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Klein, W., Ray, T., Tamayo, P.: Phys. Rev. Lett. 62, 163 (1989)

    Article  ADS  Google Scholar 

  22. Ray, T., Tamayo, P., Klein, W.: Phys. Rev. A 39, 5949 (1989)

    Article  ADS  Google Scholar 

  23. Coddington, P.D., Baillie, C.F.: Phys. Rev. Lett. 68, 962 (1992)

    Article  ADS  Google Scholar 

  24. Persky, N., Ben-Av, R., Kanter, I., Domany, E.: Phys. Rev. E 54, 2351 (1996). cond-mat/9603134

    Article  ADS  Google Scholar 

  25. Chayes, L., Machta, J.: Physica A 254, 477 (1998)

    Article  Google Scholar 

  26. Blöte, H.W.J., Deng, Y., Qian, X., Sokal, A.D.: in preparation

  27. Deng, Y., Garoni, T.M., Sokal, A.D.: Dynamic critical behavior of the Chayes–Machta algorithm for the random-cluster model, II. Three dimensions, in preparation

  28. Deng, Y., Garoni, T.M., Machta, J., Sokal, A.D.: Dynamic critical behavior of the Chayes-Machta algorithm for the random-cluster model, III. Complete graph, in preparation

  29. Deng, Y., Garoni, T.M., Machta, J., Ossola, G., Polin, M., Sokal, A.D.: Phys. Rev. Lett. 99, 055701 (2007). arXiv:0705.2751 [cond-mat.stat-mech]

    Article  ADS  Google Scholar 

  30. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  31. Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for q≥1. arXiv:1006.5073 [math.PR]

  32. Nienhuis, B.: J. Stat. Phys. 34, 731 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Nienhuis, B.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 11, Academic Press, New York (1987). Sect. IV.C

    Google Scholar 

  34. den Nijs, M.P.M.: Phys. Rev. B 27, 1674 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  35. Li, X.-J., Sokal, A.D.: Phys. Rev. Lett. 63, 827 (1989)

    Article  ADS  Google Scholar 

  36. Amit, D.J., Martín-Mayor, V.: Field Theory, the Renormalization Group, and Critical Phenomena, 3rd edn. World Scientific, Singapore (2005)

    Google Scholar 

  37. Caracciolo, S., Edwards, R.G., Pelissetto, A., Sokal, A.D.: Nucl. Phys. B 403, 475 (1993). hep-lat/9205005

    Article  ADS  Google Scholar 

  38. Cooper, F., Freedman, B., Preston, D.: Nucl. Phys. B 210 [FS6], 210 (1982)

    Article  ADS  Google Scholar 

  39. Priestley, M.B.: Spectral Analysis and Time Series, 2 vols. Academic, London (1981)

    Google Scholar 

  40. Anderson, T.W.: The Statistical Analysis of Time Series. Wiley, New York (1971)

    MATH  Google Scholar 

  41. Madras, N., Sokal, A.D.: J. Stat. Phys. 50, 109 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Ossola, G., Sokal, A.D.: Phys. Rev. E 70, 027701 (2004). hep-lat/0403010

    Article  ADS  Google Scholar 

  43. L’Ecuyer, P.: Math. Comput. 68, 249 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Guo, H., Jasnow, D.: Phys. Rev. B 35, 1846 (1987)

    Article  ADS  Google Scholar 

  45. Guo, H., Jasnow, D.: Phys. Rev. B 39, 753E (1989)

    Article  ADS  Google Scholar 

  46. Feng, X., Deng, Y., Blöte, H.W.J.: Phys. Rev. E 78, 031136 (2008). arXiv:0901.1370 [cond-mat.stat-mech]

    Article  ADS  Google Scholar 

  47. Blöte, H.W.J., den Nijs, M.P.M.: Phys. Rev. B 37, 1766 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  48. Di Francesco, P., Saleur, H., Zuber, J.-B.: Nucl. Phys. B 290 [FS20], 527 (1987)

    Article  ADS  Google Scholar 

  49. Di Francesco, P., Saleur, H., Zuber, J.-B.: Europhys. Lett. 5, 95 (1988)

    Article  ADS  Google Scholar 

  50. Salas, J., Sokal, A.D.: J. Stat. Phys. 98, 551 (2000). cond-mat/9904038

    Article  MathSciNet  Google Scholar 

  51. Ferdinand, A.E., Fisher, M.E.: Phys. Rev. 185, 832 (1969)

    Article  ADS  Google Scholar 

  52. Salas, J.: J. Phys. A 34, 1311 (2001). cond-mat/0009054

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Sokal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garoni, T.M., Ossola, G., Polin, M. et al. Dynamic Critical Behavior of the Chayes–Machta Algorithm for the Random-Cluster Model, I. Two Dimensions. J Stat Phys 144, 459–518 (2011). https://doi.org/10.1007/s10955-011-0267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0267-y

Keywords

  • Random-cluster model
  • Potts model
  • Chayes–Machta algorithm
  • Swendsen–Wang algorithm
  • Cluster algorithm
  • Dynamic critical behavior