Abstract
We study, via Monte Carlo simulation, the dynamic critical behavior of the Chayes–Machta dynamics for the Fortuin–Kasteleyn random-cluster model, which generalizes the Swendsen–Wang dynamics for the q-state Potts ferromagnet to non-integer q≥1. We consider spatial dimension d=2 and 1.25≤q≤4 in steps of 0.25, on lattices up to 10242, and obtain estimates for the dynamic critical exponent z CM. We present evidence that when 1≤q≲1.95 the Ossola–Sokal conjecture z CM≥β/ν is violated, though we also present plausible fits compatible with this conjecture. We show that the Li–Sokal bound z CM≥α/ν is close to being sharp over the entire range 1≤q≤4, but is probably non-sharp by a power. As a byproduct of our work, we also obtain evidence concerning the corrections to scaling in static observables.
This is a preview of subscription content, access via your institution.
References
Binder, K. (ed.): Monte Carlo Methods in Statistical Physics, 2nd edn. Springer, Berlin (1986)
Binder, K. (ed.): Applications of the Monte Carlo Method in Statistical Physics, 2nd edn. Springer, Berlin (1987)
Binder, K. (ed.): The Monte Carlo Method in Condensed Matter Physics, 2nd edn. Springer, Berlin (1995)
Hohenberg, P.C., Halperin, B.I.: Rev. Mod. Phys. 49, 435 (1977)
Sokal, A.D.: Monte Carlo methods in statistical mechanics: foundations and new algorithms. In: DeWitt-Morette, C., Cartier, P., Folacci, A. (eds.) Functional Integration: Basics and Applications, 1996 Cargèse Summer School, pp. 131–192. Plenum, New York (1997)
Swendsen, R.H., Wang, J.-S.: Phys. Rev. Lett. 58, 86 (1987)
Potts, R.B.: Proc. Camb. Philos. Soc. 48, 106 (1952)
Wu, F.Y.: Rev. Mod. Phys. 54, 235 (1982). Erratum: 55, 315 (1983)
Wu, F.Y.: J. Appl. Phys. 55, 2421 (1984)
Kasteleyn, P.W., Fortuin, C.M.: J. Phys. Soc. Jpn. 26 (Suppl.), 11 (1969)
Fortuin, C.M., Kasteleyn, P.W.: Physica 57, 536 (1972)
Fortuin, C.M.: Physica 58, 393 (1972)
Fortuin, C.M.: Physica 59, 545 (1972)
Edwards, R.G., Sokal, A.D.: Phys. Rev. D 38, 2009 (1988)
Grimmett, G.: The Random-Cluster Model. Springer, New York (2006)
Salas, J., Sokal, A.D.: Universal amplitude ratios in the critical two-dimensional Ising model on a torus. cond-mat/9904038v1. For space reasons, this material was deleted from the published version of this paper [J. Stat. Phys. 98, 551 (2000)]
Salas, J., Sokal, A.D.: J. Stat. Phys. 87, 1 (1997). hep-lat/9605018
Salas, J., Sokal, A.D.: J. Stat. Phys. 85, 297 (1996). hep-lat/9511022
Salas, J., Sokal, A.D.: J. Stat. Phys. 88, 567 (1997). hep-lat/9607030
Ossola, G., Sokal, A.D.: Nucl. Phys. B 691, 259 (2004). hep-lat/0402019
Klein, W., Ray, T., Tamayo, P.: Phys. Rev. Lett. 62, 163 (1989)
Ray, T., Tamayo, P., Klein, W.: Phys. Rev. A 39, 5949 (1989)
Coddington, P.D., Baillie, C.F.: Phys. Rev. Lett. 68, 962 (1992)
Persky, N., Ben-Av, R., Kanter, I., Domany, E.: Phys. Rev. E 54, 2351 (1996). cond-mat/9603134
Chayes, L., Machta, J.: Physica A 254, 477 (1998)
Blöte, H.W.J., Deng, Y., Qian, X., Sokal, A.D.: in preparation
Deng, Y., Garoni, T.M., Sokal, A.D.: Dynamic critical behavior of the Chayes–Machta algorithm for the random-cluster model, II. Three dimensions, in preparation
Deng, Y., Garoni, T.M., Machta, J., Sokal, A.D.: Dynamic critical behavior of the Chayes-Machta algorithm for the random-cluster model, III. Complete graph, in preparation
Deng, Y., Garoni, T.M., Machta, J., Ossola, G., Polin, M., Sokal, A.D.: Phys. Rev. Lett. 99, 055701 (2007). arXiv:0705.2751 [cond-mat.stat-mech]
Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)
Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for q≥1. arXiv:1006.5073 [math.PR]
Nienhuis, B.: J. Stat. Phys. 34, 731 (1984)
Nienhuis, B.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 11, Academic Press, New York (1987). Sect. IV.C
den Nijs, M.P.M.: Phys. Rev. B 27, 1674 (1983)
Li, X.-J., Sokal, A.D.: Phys. Rev. Lett. 63, 827 (1989)
Amit, D.J., Martín-Mayor, V.: Field Theory, the Renormalization Group, and Critical Phenomena, 3rd edn. World Scientific, Singapore (2005)
Caracciolo, S., Edwards, R.G., Pelissetto, A., Sokal, A.D.: Nucl. Phys. B 403, 475 (1993). hep-lat/9205005
Cooper, F., Freedman, B., Preston, D.: Nucl. Phys. B 210 [FS6], 210 (1982)
Priestley, M.B.: Spectral Analysis and Time Series, 2 vols. Academic, London (1981)
Anderson, T.W.: The Statistical Analysis of Time Series. Wiley, New York (1971)
Madras, N., Sokal, A.D.: J. Stat. Phys. 50, 109 (1988)
Ossola, G., Sokal, A.D.: Phys. Rev. E 70, 027701 (2004). hep-lat/0403010
L’Ecuyer, P.: Math. Comput. 68, 249 (1999)
Guo, H., Jasnow, D.: Phys. Rev. B 35, 1846 (1987)
Guo, H., Jasnow, D.: Phys. Rev. B 39, 753E (1989)
Feng, X., Deng, Y., Blöte, H.W.J.: Phys. Rev. E 78, 031136 (2008). arXiv:0901.1370 [cond-mat.stat-mech]
Blöte, H.W.J., den Nijs, M.P.M.: Phys. Rev. B 37, 1766 (1988)
Di Francesco, P., Saleur, H., Zuber, J.-B.: Nucl. Phys. B 290 [FS20], 527 (1987)
Di Francesco, P., Saleur, H., Zuber, J.-B.: Europhys. Lett. 5, 95 (1988)
Salas, J., Sokal, A.D.: J. Stat. Phys. 98, 551 (2000). cond-mat/9904038
Ferdinand, A.E., Fisher, M.E.: Phys. Rev. 185, 832 (1969)
Salas, J.: J. Phys. A 34, 1311 (2001). cond-mat/0009054
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Garoni, T.M., Ossola, G., Polin, M. et al. Dynamic Critical Behavior of the Chayes–Machta Algorithm for the Random-Cluster Model, I. Two Dimensions. J Stat Phys 144, 459–518 (2011). https://doi.org/10.1007/s10955-011-0267-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-011-0267-y
Keywords
- Random-cluster model
- Potts model
- Chayes–Machta algorithm
- Swendsen–Wang algorithm
- Cluster algorithm
- Dynamic critical behavior