Skip to main content
Log in

Molecular and Functional Aspects of Bacterial Chemotaxis

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the dynamics of chemotaxis in the model bacterium Escherichia coli. We analyze both its molecular mechanisms and the functional causes governing the evolution of the observed behaviors. We review molecular models of the transduction network controlling the bacterial chemotaxis in response to chemoattractant binding to the receptors. In particular, recent progress stimulated by FRET experiments is presented for statistical physics allosteric models. The response function to a pulse of chemoattractant is expressed in terms of microscopic parameters of the allosteric models. The functional causes for the shape of the response function, as measured in experimental tethering assay, are then investigated. A hydrodynamic equation, valid for space-time scales larger than the microscopic running length and time, is derived for the position of a swimming bacterium. It is then shown how optimization over the microscopic parameters of the response function yields the curve observed experimentally. In particular, the observed property of adaptation to the background level of aspartate emerges as being produced by fluctuations in the space-time chemoattractant profiles sensed by bacteria along their trajectories. This functional cause is distinct from arguments based on the extension of the dynamical range. Future directions and experiments to probe the adaptation of E. coli chemotaxis to the environmental conditions and its response to realistic space-time chemoattractant stimuli are finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berg, H.C.: E. coli in Motion, Springer, New York (2003)

    Google Scholar 

  2. Vergassola, M., Villermaux, E., Shraiman, B.I.: Infotaxis: searching without gradients. Nature 445, 406–409 (2007)

    Article  ADS  Google Scholar 

  3. Adler, J., Templeton, B.: The effect of environmental conditions of Escherichia coli. J. Gen. Microbiol. 46, 175–184 (1967)

    Google Scholar 

  4. Staropoli, F., Alon, U.: Computerized analysis of chemotaxis at different stages of bacterial growth. Biophys. J. 78, 513–519 (2000)

    Article  Google Scholar 

  5. Wei, Y., Wang, X., Liu, J., Nemenman, I., Singh, A.H., Weiss, H., Levin, B.R.: The population dynamics of bacteria in physically structured habitats and the adaptive virtue of random motility. Proc. Natl. Acad. Sci. USA 108, 4047–4052 (2011)

    Article  ADS  Google Scholar 

  6. Tu, Y., Shimizu, T.S., Berg, H.C.: Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc. Natl. Acad. Sci. USA 105, 14855–14860 (2008)

    Article  ADS  Google Scholar 

  7. Shimizu, T.S., Tu, Y., Berg, H.C.: A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. Mol. Syst. Biol. 6, 382 (2010)

    Article  Google Scholar 

  8. Celani, A., Vergassola, M.: Bacterial strategies for chemotaxis response. Proc. Natl. Acad. Sci. USA 107, 1391–1396 (2010)

    Article  ADS  Google Scholar 

  9. Vladimirov, N., Sourjik, V.: Chemotaxis: how bacteria use memory. Biol. Chem. 390, 1097–1104 (2009)

    Article  Google Scholar 

  10. Cluzel, P., Surette, M., Leibler, S.: An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 1652–1655 (2000)

    Article  ADS  Google Scholar 

  11. Bai, F., Branch, R.W., Nicolau, D.V., Pilizota Jr., T., Steel, B.C., Maini, P.K., Berry, R.M.: Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327, 685–689 (2010)

    Article  ADS  Google Scholar 

  12. Bray, D., Duke, T.A.J.: Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct. 33, 53–73 (2004)

    Article  Google Scholar 

  13. Barkai, N., Leibler, S.: Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    Article  ADS  Google Scholar 

  14. Li, M., Hazelbauer, G.L.: Adaptational assistance in clusters of bacterial chemoreceptors. Mol. Microbiol. 56, 1617–1626 (2005)

    Article  Google Scholar 

  15. Mello, B.A., Tu, Y.: An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli. Proc. Natl. Acad. Sci. USA 102, 17354–17359 (2005)

    Article  ADS  Google Scholar 

  16. Keymer, J.E., Endres, R.G., Skoge, M., Meir, Y., Wingreen, N.S.: Chemosensing in Escherichia coli: two regimes of two-state receptors. Proc. Natl. Acad. Sci. USA 103, 1786–1791 (2006)

    Article  ADS  Google Scholar 

  17. Hansen, C.H., Endres, R.G., Wingreen, N.S.: Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLoS Comput. Biol. 4, e1 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Vladimirov, N., Løovdok, L., Lebiedz, D., Sourjik, V.: Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLoS Comput. Biol. 4, e1000242 (2008)

    Article  Google Scholar 

  19. Emonet, T., Cluzel, P.: Relationship between cellular response and behavioral variability in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 105, 3304–3309 (2008)

    Article  ADS  Google Scholar 

  20. Jiang, L., Ouyang, Q., Tu, Y.: A mechanism for precision-sensing via a gradient-sensing pathway: a model of Escherichia coli thermotaxis. Biophys. J. 97, 74–82 (2009)

    Article  ADS  Google Scholar 

  21. Vladimirov, N., Lebiedz, D., Sourjik, V.: Predicted auxiliary navigation mechanism of peritrichously flagellated chemotactic bacteria. PLoS Comput. Biol. 6, e1000717 (2010)

    Article  MathSciNet  Google Scholar 

  22. Segall, J.E., Block, S.M., Berg, H.C.: Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 83, 8987–8991 (1986)

    Article  ADS  Google Scholar 

  23. Bensoussan, A., Lions, J.-L., Papanicolau, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  24. de Gennes, P.G.: Chemotaxis: the role of internal delays. Eur. Biophys. J. 33, 691–693 (2004)

    Article  Google Scholar 

  25. Attneave, F.: Informational aspects of visual perception. Psychol. Rev. 61, 183–193 (1954)

    Article  Google Scholar 

  26. Barlow, H.B.: Possible principles underlying the transformation of sensory messages. In: Sensory Communication, pp. 217–234. MIT Press, Cambridge (1961)

    Google Scholar 

  27. Nemenman, I.: Information theory and adaptation. In: Wall, M.E. (ed.) Quantitative Biology: From Molecular to Cellular Systems. Taylor & Francis, London (2011)

    Google Scholar 

  28. Laughlin, S.B.: Form and function in retinal processing. Trends Neurosci. 10, 478–483 (1987)

    Article  Google Scholar 

  29. Brenner, N., Bialek, W., de Ruyter van Steveninck, R.: Adaptive rescaling optimizes information transmission. Neuron 26, 695–702 (2000)

    Article  Google Scholar 

  30. Kalinin, Y.V., Jiang, L., Tu, Y., Wu, M.: Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys. J. 96, 2439–2448 (2009)

    Article  ADS  Google Scholar 

  31. Salman, H., Libchaber, A.: A concentration-dependent switch in the bacterial response to temperature. Nat. Cell Biol. 9, 1098–1100 (2007)

    Article  Google Scholar 

  32. Skoge, M., Endres, R.G., Wingreen, N.S.: Receptor-receptor coupling in bacterial chemotaxis: evidence for strongly-coupled clusters. Biophys. J. 90, 4317–4326 (2006)

    Article  ADS  Google Scholar 

  33. Greenfield, D., et al.: Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol. 16, e1000137 (2009)

    Article  Google Scholar 

  34. Manley, S., Gillette, J.M., Patterson, G.H., Shroff, H., Hess, H.F., Betzig, E., Lippincott-Schwartz, J.: High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008)

    Article  Google Scholar 

  35. Berg, H.C., Brown, D.A.: Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vergassola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celani, A., Shimizu, T.S. & Vergassola, M. Molecular and Functional Aspects of Bacterial Chemotaxis. J Stat Phys 144, 219–240 (2011). https://doi.org/10.1007/s10955-011-0251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0251-6

Keywords

Navigation