Skip to main content

Advertisement

Log in

Monte Carlo Methods for Rough Free Energy Landscapes: Population Annealing and Parallel Tempering

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Parallel tempering and population annealing are both effective methods for simulating equilibrium systems with rough free energy landscapes. Parallel tempering, also known as replica exchange Monte Carlo, is a Markov chain Monte Carlo method while population annealing is a sequential Monte Carlo method. Both methods overcome the exponential slowing associated with high free energy barriers. The convergence properties and efficiencies of the two methods are compared. For large systems, population annealing is closer to equilibrium than parallel tempering for short simulations. However, with respect to the amount of computation, parallel tempering converges exponentially while population annealing converges only inversely. As a result, for sufficiently long simulations parallel tempering approaches equilibrium more quickly than population annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okamoto, Y.: J. Mol. Graph. Model. 22, 425 (2004)

    Article  Google Scholar 

  2. Nadler, W., Hansmann, U.H.E.: Phys. Rev. E 75, 026109 (2007)

    Article  ADS  Google Scholar 

  3. Swendsen, R.H., Wang, J.-S.: Phys. Rev. Lett. 57, 2607 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  4. Geyer, C.: In: Keramidas, E.M. (ed.) Computing Science and Statistics: 23rd Symposium on the Interface, p. 156. Interface Foundation, Fairfax Station (1991)

    Google Scholar 

  5. Hukushima, K., Nemoto, K.: J. Phys. Soc. Jpn. 65, 1604 (1996)

    Article  ADS  Google Scholar 

  6. Earl, D.J., Deem, M.W.: Phys. Chem. Chem. Phys. 7, 3910 (2005)

    Article  Google Scholar 

  7. Katzgraber, H.G., Körner, M., Young, A.P.: Phys. Rev. B 73, 224432 (2006)

    Article  ADS  Google Scholar 

  8. Banos, R.A., Cruz, A., Fernandez, L.A., Gil-Narvion, J.M., Gordillo-Guerrero, A., Guidetti, M., Maiorano, A., Mantovani, F., Marinari, E., Martin-Mayor, V., et al.: J. Stat. Mech. Theory Exp. 2010, P06026 (2010)

    Article  Google Scholar 

  9. Hansmann, U.H.E.: Chem. Phys. Lett. 281, 140 (1997)

    Article  ADS  Google Scholar 

  10. Schug, A., Herges, T., Verma, A., Wenzel, W.: J. Phys., Condens. Matter 17, S1641 (2005)

    Article  ADS  Google Scholar 

  11. Burgio, G., Fuhrmann, M., Kerler, W., Muller-Preussker, M.: Phys. Rev. D 75, 014504 (2007)

    Article  ADS  Google Scholar 

  12. Hukushima, K., Iba, Y.: In: Gubernatis, J.E. (ed.) The Monte Carlo Method in the Physical Sciences: Celebrating the 50th Anniversary of the Metropolis Algorithm. AIP Conf. Proc., vol. 690, pp. 200–206. AIP, New York (2003)

    Google Scholar 

  13. Machta, J.: Phys. Rev. E 82, 026704 (2010)

    Article  ADS  Google Scholar 

  14. Machta, J.: Phys. Rev. E 80, 056706 (2009)

    Article  ADS  Google Scholar 

  15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Science 220, 671 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. van Laarhoven, P., Aarts, E.: Simulated Annealing: Theory and Applications. Reidel, Dordrecht (1987)

    MATH  Google Scholar 

  17. Anderson, J.B.: J. Chem. Phys. 63, 1499 (1975)

    Article  ADS  Google Scholar 

  18. Grassberger, P.: Comput. Phys. Commun. 147, 64 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    MATH  Google Scholar 

  20. Katzgraber, H.G., Trebst, S., Huse, D.A., Troyer, M.: J. Stat. Mech. 03018 (2006)

  21. Trebst, S., Troyer, M., Hansmann, U.H.E.: J. Chem. Phys. 124, 174903 (2006)

    Article  ADS  Google Scholar 

  22. Bittner, E., Nußbaumer, A., Janke, W.: Phys. Rev. Lett. 101, 130603 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Machta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machta, J., Ellis, R.S. Monte Carlo Methods for Rough Free Energy Landscapes: Population Annealing and Parallel Tempering. J Stat Phys 144, 541–553 (2011). https://doi.org/10.1007/s10955-011-0249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0249-0

Keywords

Navigation