Are Biological Systems Poised at Criticality?

Abstract

Many of life’s most fascinating phenomena emerge from interactions among many elements—many amino acids determine the structure of a single protein, many genes determine the fate of a cell, many neurons are involved in shaping our thoughts and memories. Physicists have long hoped that these collective behaviors could be described using the ideas and methods of statistical mechanics. In the past few years, new, larger scale experiments have made it possible to construct statistical mechanics models of biological systems directly from real data. We review the surprising successes of this “inverse” approach, using examples from families of proteins, networks of neurons, and flocks of birds. Remarkably, in all these cases the models that emerge from the data are poised near a very special point in their parameter space—a critical point. This suggests there may be some deeper theoretical principle behind the behavior of these diverse systems.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ackley, D., Hinton, G., Sejnowski, T.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Article  Google Scholar 

  2. 2.

    Adami, C., Chu, J.: Critical and near-critical branching processes. Phys. Rev. E 66(1), 011907 (2002). doi:10.1103/PhysRevE.66.011907

    MathSciNet  ADS  Article  Google Scholar 

  3. 3.

    Amit, D.J.: Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  4. 4.

    Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(96), 223–230 (1973)

    ADS  Article  Google Scholar 

  5. 5.

    Auerbach, F.: Das Gesetz der Bevölkerungskonzentration. Petermanns Geogr. Mitt. 59, 74–76 (1913)

    Google Scholar 

  6. 6.

    Bak, P.: How Nature Works. Springer, New York (1996)

    Google Scholar 

  7. 7.

    Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71(24), 4083–4086 (1993)

    ADS  Article  Google Scholar 

  8. 8.

    Bak, P., Tang, C.: Earthquakes as a self-organized critical phenomenon. J. Geophys. Res. 94(B11), 15635–15637 (1989). doi:10.1029/JB094iB11p15635

    ADS  Article  Google Scholar 

  9. 9.

    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    MathSciNet  ADS  Article  Google Scholar 

  10. 10.

    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. USA 105(4), 1232–1237 (2008). doi:10.1073/pnas.0711437105

    ADS  Article  Google Scholar 

  11. 11.

    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim. Behav. 76, 201–215 (2008). doi:10.1016/j.anbehav.2008.02.004

    Article  Google Scholar 

  12. 12.

    Beggs, J.M.: The criticality hypothesis: how local cortical networks might optimize information processing. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 366(1864), 329–343 (2004). doi:10.1098/rsta.2007.2092

    MathSciNet  ADS  Article  Google Scholar 

  13. 13.

    Beggs, J.M., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23(35), 11167–11177 (2003)

    Google Scholar 

  14. 14.

    Beggs, J.M., Plenz, D.: Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24(22), 5216–5229 (2004). doi:10.1523/JNEUROSCI.0540-04.2004

    Article  Google Scholar 

  15. 15.

    Bialek, W., Ranganathan, R.: Rediscovering the power of pairwise interactions. arXiv:q-bio.QM (2007)

  16. 16.

    Bishop, D., Reppy, J.: Study of the superfluid transition in two-dimensional 4He films. Phys. Rev. Lett. 40(26), 1727–1730 (1978). doi:10.1103/PhysRevLett.40.1727

    ADS  Article  Google Scholar 

  17. 17.

    Broderick, T., Dudik, M., Tkacik, G., Schapire, R.E., Bialek, W.: Faster solutions of the inverse pairwise Ising problem. arXiv:q-bio.QM (2007)

  18. 18.

    Camalet, S., Duke, T., Jülicher, F., Prost, J.: Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc. Natl. Acad. Sci. USA 97(7), 3183–3188 (2000)

    ADS  Article  Google Scholar 

  19. 19.

    Cavagna, A., Cimarelli, A., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Santagati, R., Stefanini, F.: New statistical tools for analyzing the structure of animal groups. Math. Biosci. 214(1–2), 32–37 (2008). doi:10.1016/j.mbs.2008.05.006

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Cavagna, A., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A.: The STARFLAG handbook on collective animal behaviour: 2. Three-dimensional analysis (2008). doi:10.1016/j.anbehav.2008.02.003

  21. 21.

    Cavagna, A., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: The STARFLAG handbook on collective animal behaviour: 1. Empirical methods (2008). doi:10.1016/j.anbehav.2008.02.002

  22. 22.

    Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Viale, M.: Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 107(26), 11865–11870 (2010). doi:10.1073/pnas.1005766107

    ADS  Article  Google Scholar 

  23. 23.

    Chen, D.M., Wu, S., Guo, A., Yang, Z.: Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons. J. Phys. A, Math. Gen. 28, 5177 (1995). doi:10.1088/0305-4470/28/18/009

    ADS  MATH  Article  Google Scholar 

  24. 24.

    Chen, W., Hobbs, J.P., Tang, A., Beggs, J.M.: A few strong connections: optimizing information retention in neuronal avalanches. BMC Neurosci. 11, 3 (2010). doi:10.1186/1471-2202-11-3

    Article  Google Scholar 

  25. 25.

    Choe, Y., Magnasco, M.O., Hudspeth, A.J.: A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels. Proc. Natl. Acad. Sci. USA 95(26), 15321–15326 (1998)

    ADS  Article  Google Scholar 

  26. 26.

    Chu, J., Adami, C.: A simple explanation for taxon abundance patterns. Proc. Natl. Acad. Sci. USA 96(26), 15017–15019 (1999)

    ADS  MATH  Article  Google Scholar 

  27. 27.

    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009). doi:10.1137/070710111

    MathSciNet  ADS  MATH  Article  Google Scholar 

  28. 28.

    Cocco, S., Leibler, S., Monasson, R.: Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proc. Natl. Acad. Sci. USA 106(33), 14058–14062 (2009). doi:10.1073/pnas.0906705106

    ADS  Article  Google Scholar 

  29. 29.

    Cordes, M.H., Davidson, A.R., Sauer, R.T.: Sequence space, folding and protein design. Curr. Opin. Struct. Biol. 6(1), 3–10 (1996)

    Article  Google Scholar 

  30. 30.

    Corral, Á., Pérez, C., Díaz-Guilera, A., Arenas, A.: Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators. Phys. Rev. Lett. 74(1), 118–121 (1995)

    ADS  Article  Google Scholar 

  31. 31.

    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Google Scholar 

  32. 32.

    Cullen, J.M., Shaw, E., Baldwin, H.A.: Methods for measuring the three-dimensional structure of fish schools. Anim. Behav. 13(4), 534–543 (1965)

    Article  Google Scholar 

  33. 33.

    Daggett, V., Fersht, A.: The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 4(6), 497–502 (2003). doi:10.1038/nrm1126

    Article  Google Scholar 

  34. 34.

    Duke, T., Jülicher, F.: Active traveling wave in the cochlea. Phys. Rev. Lett. 90(15), 158101 (2003)

    ADS  Article  Google Scholar 

  35. 35.

    Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  36. 36.

    Eguíluz, V.M., Ospeck, M., Choe, Y., Hudspeth, A.J., Magnasco, M.O.: Essential nonlinearities in hearing. Phys. Rev. Lett. 84(22), 5232–5235 (2000)

    ADS  Article  Google Scholar 

  37. 37.

    Giardina, I.: Collective behavior in animal groups: theoretical models and empirical studies. HFSP J. 2(4), 205–219 (2008). doi:10.2976/1.2961038

    Article  Google Scholar 

  38. 38.

    Gold, T.: Hearing. II. The physical basis of the action of the cochlea. Proc. R. Soc. Lond. B, Biol. Sci. 135, 492–498 (1948)

    ADS  Article  Google Scholar 

  39. 39.

    Gould, S., Eldredge, N.: Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3(2), 115–151 (1977)

    Google Scholar 

  40. 40.

    Halabi, N., Rivoire, O., Leibler, S., Ranganathan, R.: Protein sectors: evolutionary units of three-dimensional structure. Cell 138(4), 774–786 (2009). doi:10.1016/j.cell.2009.07.038

    Article  Google Scholar 

  41. 41.

    Haldeman, C., Beggs, J.M.: Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys. Rev. Lett. 94(5), 058101 (2005)

    ADS  Article  Google Scholar 

  42. 42.

    Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1949)

    Google Scholar 

  43. 43.

    Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley, Reading (1991)

    Google Scholar 

  44. 44.

    Herz, A., Hopfield, J.: Earthquake cycles and neural reverberations: collective oscillations in systems with pulse-coupled threshold elements. Phys. Rev. Lett. 75(6), 1222–1225 (1995)

    ADS  Article  Google Scholar 

  45. 45.

    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79(8), 2554–2558 (1982)

    MathSciNet  ADS  Article  Google Scholar 

  46. 46.

    Hopfield, J.J., Tank, D.W.: Computing with neural circuits: a model. Science 233(4764), 625–633 (1986)

    ADS  Article  Google Scholar 

  47. 47.

    Horovitz, A., Fersht, A.R.: Co-operative interactions during protein folding. J. Mol. Biol. 224(3), 733–740 (1992)

    Article  Google Scholar 

  48. 48.

    Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  49. 49.

    Hudspeth, A.J., Jülicher, F., Martin, P.: A critique of the critical cochlea: Hopf—a bifurcation—is better than none. J. Neurophysiol. 104(3), 1219–1229 (2010). doi:10.1152/jn.00437.2010

    Article  Google Scholar 

  50. 50.

    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957). doi:10.1103/PhysRev.106.620

    MathSciNet  ADS  Article  Google Scholar 

  51. 51.

    Jaynes, E.T.: Information theory and statistical mechanics. II. Phys. Rev. 108, 171 (1957). doi:10.1103/PhysRev.108.171

    MathSciNet  ADS  Article  Google Scholar 

  52. 52.

    Keller, J.B., Zumino, B.: Determination of intermolecular potentials from thermodynamic data and the law of corresponding states. J. Chem. Phys. 30(5), 1351 (1959). doi:10.1063/1.1730184

    ADS  Article  Google Scholar 

  53. 53.

    Kemp, D.T.: Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am. 64(5), 1386–1391 (1978)

    MathSciNet  ADS  Article  Google Scholar 

  54. 54.

    Krause, D.J., Ruxton, G.D.: Living in Groups. Oxford University Press, Oxford (2002)

    Google Scholar 

  55. 55.

    Litke, A.M., Bezayiff, N., Chichilnisky, E.J., Cunningham, W., Dabrowski, W., Grillo, A.A., Grivich, M., Grybos, P., Hottowy, P., Kachiguine, S., Kalmar, R.S., Mathieson, K., Petrusca, D., Rahman, M., Sher, A.: What does the eye tell the brain? Development of a system for the large-scale recording of retinal output activity. IEEE Trans. Nucl. Sci. 51(4), 1434–1440 (2004). doi:10.1109/TNS.2004.832706

    ADS  Article  Google Scholar 

  56. 56.

    Lockless, S.W., Ranganathan, R.: Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286(5438), 295–299 (1999)

    Article  Google Scholar 

  57. 57.

    Lunt, B., Szurmant, H., Procaccini, A., Hoch, J.A., Hwa, T., Weigt, M.: Inference of direct residue contacts in two-component signaling. Methods Enzymol. 471, 17–41 (2010). doi:10.1016/S0076-6879(10)71002-8

    Article  Google Scholar 

  58. 58.

    Magnasco, M., Piro, O., Cecchi, G.: Self-tuned critical anti-Hebbian networks. Phys. Rev. Lett. 102, 258102 (2009)

    ADS  Article  Google Scholar 

  59. 59.

    Magnasco, M.O.: A wave traveling over a Hopf instability shapes the cochlear tuning curve. Phys. Rev. Lett. 90(5), 058101 (2003)

    ADS  Article  Google Scholar 

  60. 60.

    Meister, M., Lagnado, L., Baylor, D.A.: Concerted signaling by retinal ganglion cells. Science 270(5239), 1207–1210 (1995)

    ADS  Article  Google Scholar 

  61. 61.

    Mézard, M., Mora, T.: Constraint satisfaction problems and neural networks: a statistical physics perspective. J. Physiol. (Paris) 103(1–2), 107–113 (2009). doi:10.1016/j.jphysparis.2009.05.013

    Article  Google Scholar 

  62. 62.

    Mézard, M., Parisi, G., Virasoro, M.A.: Spin-Glass Theory and Beyond. Lecture Notes in Physics, vol. 9. World Scientific, Singapore (1987)

    Google Scholar 

  63. 63.

    Mora, T., Walczak, A.M., Bialek, W., Callan, C.G.: Maximum entropy models for antibody diversity. Proc. Natl. Acad. Sci. USA 107(12), 5405–5410 (2010). doi:10.1073/pnas.1001705107

    ADS  Article  Google Scholar 

  64. 64.

    Murphy, K.P., Travers, P., Janeway, C., Walport, M.: Janeway’s Immunobiology. Garland, New York (2008)

    Google Scholar 

  65. 65.

    Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323 (2005). doi:10.1080/00107510500052444

    ADS  Article  Google Scholar 

  66. 66.

    Ohiorhenuan, I.E., Mechler, F., Purpura, K.P., Schmid, A.M., Hu, Q., Victor, J.D.: Sparse coding and high-order correlations in fine-scale cortical networks. Nature 466(7306), 617–621 (2010). doi:10.1038/nature09178

    ADS  Article  Google Scholar 

  67. 67.

    Ohiorhenuan, I.E., Victor, J.D.: Information-geometric measure of 3-neuron firing patterns characterizes scale-dependence in cortical networks. J. Comput. Neurosci. 30(1), 125–141 (2011). doi:10.1007/s10827-010-0257-0

    MathSciNet  Article  Google Scholar 

  68. 68.

    Ospeck, M., Eguíluz, V.M., Magnasco, M.O.: Evidence of a Hopf bifurcation in frog hair cells. Biophys. J. 80(6), 2597–2607 (2001). doi:10.1016/S0006-3495(01)76230-3

    Article  Google Scholar 

  69. 69.

    Rieke, F., Warland, D., de Ryuter van Stevenick, R., Bialek, W.: Spikes: Exploring the Neural Code. MIT Press, Cambridge (1997)

    Google Scholar 

  70. 70.

    Russ, W.P., Lowery, D.M., Mishra, P., Yaffe, M.B., Ranganathan, R.: Natural-like function in artificial WW domains. Nature 437(7058), 579–583 (2005). doi:10.1038/nature03990

    ADS  Article  Google Scholar 

  71. 71.

    Schneidman, E., Still, S., Berry, M.J., Bialek, W.: Network information and connected correlations. Phys. Rev. Lett. 91(23), 238701 (2003)

    ADS  Article  Google Scholar 

  72. 72.

    Schneidman, E., Berry, M.J., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087), 1007–1012 (2006). doi:10.1038/nature04701

    ADS  Article  Google Scholar 

  73. 73.

    Schug, A., Weigt, M., Onuchic, J.N., Hwa, T., Szurmant, H.: High-resolution protein complexes from integrating genomic information with molecular simulation. Proc. Natl. Acad. Sci. USA 106(52), 22124–22129 (2009). doi:10.1073/pnas.0912100106

    ADS  Article  Google Scholar 

  74. 74.

    Segev, R., Goodhouse, J., Puchalla, J., Berry, M.J.: Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat. Neurosci. 7(10), 1154–1161 (2004). doi:10.1038/nn1323

    Article  Google Scholar 

  75. 75.

    Sessak, V., Monasson, R.: Small-correlation expansions for the inverse Ising problem. J. Phys. A, Math. Theor. 42(5), 055001 (2009). doi:10.1088/1751-8113/42/5/055001

    MathSciNet  ADS  Article  Google Scholar 

  76. 76.

    Seung, H.S.: How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA 93(23), 13339–13344 (1996)

    ADS  Article  Google Scholar 

  77. 77.

    Shlens, J., Field, G.D., Gauthier, J.L., Greschner, M., Sher, A., Litke, A.M., Chichilnisky, E.J.: The structure of large-scale synchronized firing in primate retina. J. Neurosci. 29(15), 5022–5031 (2009). doi:10.1523/JNEUROSCI.5187-08.2009

    Article  Google Scholar 

  78. 78.

    Shlens, J., Field, G.D., Gauthier, J.L., Grivich, M.I., Petrusca, D., Sher, A., Litke, A.M., Chichilnisky, E.J.: The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26(32), 8254–8266 (2006). doi:10.1523/JNEUROSCI.1282-06.2006

    Article  Google Scholar 

  79. 79.

    Socolich, M., Lockless, S.W., Russ, W.P., Lee, H., Gardner, K.H., Ranganathan, R.: Evolutionary information for specifying a protein fold. Nature 437(7058), 512–518 (2005). doi:10.1038/nature03991

    ADS  Article  Google Scholar 

  80. 80.

    Stephens, G.J., Mora, T., Tkacik, G., Bialek, W.: Thermodynamics of natural images. arXiv:q-bio.NC (2008)

  81. 81.

    Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J.L., Patel, H., Prieto, A., Petrusca, D., Grivich, M.I., Sher, A., Hottowy, P., Dabrowski, W., Litke, A.M., Beggs, J.M.: A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. J. Neurosci. 28(2), 505–518 (2008). doi:10.1523/JNEUROSCI.3359-07.2008

    Article  Google Scholar 

  82. 82.

    Tkacik, G., Schneidman, E., Berry, M.J. II, Bialek, W.: Ising models for networks of real neurons. arXiv:q-bio.NC (2006)

  83. 83.

    Tkacik, G., Schneidman, E., Berry, M.J. II, Bialek, W.: Spin glass models for a network of real neurons. arXiv:q-bio.NC (2009)

  84. 84.

    Toner, J., Tu, Y.: Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75(23), 4326–4329 (1995)

    ADS  Article  Google Scholar 

  85. 85.

    Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58(4), 4828–4858 (1998)

    MathSciNet  ADS  Article  Google Scholar 

  86. 86.

    Usher, M., Stemmler, M., Olami, Z.: Dynamic pattern formation leads to 1/f noise in neural populations. Phys. Rev. Lett. 74(2), 326–329 (1995)

    ADS  Article  Google Scholar 

  87. 87.

    Veatch, S.L., Soubias, O., Keller, S.L., Gawrisch, K.: Critical fluctuations in domain-forming lipid mixtures. Proc. Natl. Acad. Sci. USA 104(45), 17650–17655 (2007)

    ADS  Article  Google Scholar 

  88. 88.

    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    ADS  Article  Google Scholar 

  89. 89.

    Wässle, H., Peichl, L., Boycott, B.B.: Mosaics and territories of cat retinal ganglion cells. Prog. Brain Res. 58, 183–190 (1983). doi:10.1016/S0079-6123(08)60019-9

    Article  Google Scholar 

  90. 90.

    Watson, H., Galton, F.: On the probability of the extinction of families. J. Anthropol. Inst. G.B. Irel. 4, 138–144 (1875)

    Article  Google Scholar 

  91. 91.

    Weigt, M., White, R.A., Szurmant, H., Hoch, J.A., Hwa, T.: Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. USA 106(1), 67–72 (2009). doi:10.1073/pnas.0805923106

    ADS  Article  Google Scholar 

  92. 92.

    Weinstein, J.A., Jiang, N., White, R.A., Fisher, D.S., Quake, S.R.: High-throughput sequencing of the zebrafish antibody repertoire. Science 324(5928), 807–810 (2009). doi:10.1126/science.1170020

    ADS  Article  Google Scholar 

  93. 93.

    Yu, S., Huang, D., Singer, W., Nikolic, D.: A small world of neuronal synchrony. Cereb. Cortex 18(12), 2891–901 (2008). doi:10.1093/cercor/bhn047

    Article  Google Scholar 

  94. 94.

    Yule, G.: A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, F.R.S. Philos. Trans. R. Soc. Lond., B Contain. Pap. Biol. Character 213, 21–87 (1925)

    ADS  Article  Google Scholar 

  95. 95.

    Zapperi, S., Lauritsen, K.B., Stanley, H.: Self-organized branching processes: mean-field theory for avalanches. Phys. Rev. Lett. 75(22), 4071–4074 (1995)

    ADS  Article  Google Scholar 

  96. 96.

    Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge (1949)

    Google Scholar 

  97. 97.

    Zurek, P.: Spontaneous narrowband acoustic signals emitted by human ears. J. Acoust. Soc. Am. 69, 514–523 (1981)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to William Bialek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mora, T., Bialek, W. Are Biological Systems Poised at Criticality?. J Stat Phys 144, 268–302 (2011). https://doi.org/10.1007/s10955-011-0229-4

Download citation

Keywords

  • Critical point
  • Maximum entropy model
  • Biological networks
  • Proteins
  • Collective behavior