Solvable Phase Diagrams and Ensemble Inequivalence for Two-Dimensional and Geophysical Turbulent Flows

  • Antoine Venaille
  • Freddy BouchetEmail author


Using explicit analytical computations, generic occurrence of inequivalence between two or more statistical ensembles is obtained for a large class of equilibrium states of two-dimensional and geophysical turbulent flows. The occurrence of statistical ensemble inequivalence is shown to be related to previously observed phase transitions in the equilibrium flow topology. We find in these turbulent flow equilibria, two mechanisms for the appearance of ensemble equivalences, that were not observed in any physical systems before. These mechanisms are associated respectively with second-order azeotropy (simultaneous appearance of two second-order phase transitions), and with bicritical points (bifurcation from a first-order to two second-order phase transition lines). The important roles of domain geometry, of topography, and of a screening length scale (the Rossby radius of deformation) are discussed. It is found that decreasing the screening length scale (making interactions more local) surprisingly widens the range of parameters associated with ensemble inequivalence. These results are then generalized to a larger class of models, and applied to a complete description of an academic model for inertial oceanic circulation, the Fofonoff flow.


Statistical ensemble inequivalence Non-concave entropy Long-range interacting systems Two-dimensional turbulence Phase transitions Fofonoff flows Azeotropy Bicritical points Negative heat capacity 


  1. 1.
    Barré, J., Bouchet, F., Dauxois, T., Ruffo, S.: Large deviation techniques applied to systems with long-range interactions. J. Stat. Phys. 119, 677–713 (2005). doi: 10.1007/s10955-005-3768-8 CrossRefzbMATHADSMathSciNetGoogle Scholar
  2. 2.
    Barré, J., Mukamel, D., Ruffo, S.: Inequivalence of ensembles in a system with long-range interactions. Phys. Rev. Lett. 87(3), 030601 (2001) CrossRefADSGoogle Scholar
  3. 3.
    Bouchet, F.: Mecanique statistique des ecoulements geophysiques. PHD, Universite Joseph Fourier-Grenoble (2001) Google Scholar
  4. 4.
    Bouchet, F.: Simpler variational problems for statistical equilibria of the 2d Euler equation and other systems with long range interactions. Physica D, Nonlinear Phenom. 237, 1976–1981 (2008) CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    Bouchet, F., Barré, J.: Classification of Phase Transitions and Ensemble Inequivalence, in Systems with Long Range Interactions. J. Stat. Phys. 118, 1073–1105 (2005). doi: 10.1007/s10955-004-2059-0 CrossRefzbMATHADSMathSciNetGoogle Scholar
  6. 6.
    Bouchet, F., Simonnet, E.: Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett. 102(9), 094504 (2009) CrossRefADSGoogle Scholar
  7. 7.
    Bouchet, F., Sommeria, J.: Emergence of intense jets and Jupiter’s great red spot as maximum-entropy structures. J. Fluid Mech. 464, 165–207 (2002) CrossRefzbMATHADSMathSciNetGoogle Scholar
  8. 8.
    Bouchet, F., Gupta, S., Mukamel, D.: Thermodynamics and dynamics of systems with long-range interactions. Physica A, Stat. Mech. Appl. 389, 4389–4405 (2010) CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Bretherton, F.P., Haidvogel, D.B.: Two-dimensional turbulence above topography. J. Fluid Mech. 78, 129–154 (1976) CrossRefzbMATHADSGoogle Scholar
  10. 10.
    Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992) CrossRefzbMATHADSMathSciNetGoogle Scholar
  11. 11.
    Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II. Commun. Math. Phys. 174, 229–260 (1995) CrossRefzbMATHADSMathSciNetGoogle Scholar
  12. 12.
    Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57–159 (2009) CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Carnevale, G.F., Frederiksen, J.S.: Nonlinear stability and statistical mechanics of flow over topography. J. Fluid Mech. 175, 157–181 (1987) CrossRefzbMATHADSGoogle Scholar
  14. 14.
    Charney, J.G.: On a physical basis for numerical prediction of large-scale motions in the atmosphere. J. Meteorol. 6(6), 372–385 (1949) CrossRefGoogle Scholar
  15. 15.
    Chavanis, P.H.: Phase transitions in self-gravitating systems: self-gravitating fermions and hard-sphere models. Phys. Rev. E 65(5), 056123 (2002) CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Chavanis, P.H.: Phase transitions in self-gravitating systems. Int. J. Mod. Phys. B 20, 3113–3198 (2006) CrossRefzbMATHADSGoogle Scholar
  17. 17.
    Chavanis, P.H., Sommeria, J.: Classification of self-organized vortices in two-dimensional turbulence: the case of a bounded domain. J. Fluid Mech. 314, 267–297 (1996) CrossRefzbMATHADSGoogle Scholar
  18. 18.
    Chomaz, P., Gulminelli, F.: Phase transition in small system. Nucl. Phys. A 749, 3–13 (2005) CrossRefADSGoogle Scholar
  19. 19.
    Corvellec, M., Bouchet, F.: A complete theory of low-energy phase diagrams for two-dimensional turbulence equilibria. In preparation (2011) Google Scholar
  20. 20.
    Costeniuc, M., Ellis, R.S., Touchette, H.: Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model. J. Math. Phys. 46, 063301 (2005) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Dauxois, T., Ruffo, S., Cugliandolo, L.F. (eds.): Long-Range Interacting Systems. Lecture Notes of the les Houches Summer School, August 2008, vol. 90 (2009) Google Scholar
  22. 22.
    Dauxois, T., Ruffo, S., Arimondo, E., Wilkens, M. (eds.): Dynamics and Thermodynamics of Systems With Long Range Interactions (2002) Google Scholar
  23. 23.
    Dauxois, T., de Buyl, P., Lori, L., Ruffo, S.: Models with short- and long-range interactions: the phase diagram and the reentrant phase. J. Stat. Mech. Theory Exp. 6, 15 (2010) Google Scholar
  24. 24.
    Dukowicz, J.K., Greatbatch, R.J.: Evolution of mean-flow Fofonoff gyres in barotropic quasigeostrophic turbulence. J. Phys. Oceanogr. 29, 1832–1852 (1999). doi: 10.1175/1520-0485(1999)029 CrossRefADSGoogle Scholar
  25. 25.
    Ellis, R.S., Haven, K., Turkington, B.: Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101, 999 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Ellis, R.S., Haven, K., Turkington, B.: Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows. Nonlinearity 15, 239–255 (2002) CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. 27.
    Euler, L.: General principles of the motion of fluids. Physica D, Nonlinear Phenom. 237(14–17), 1825–1839 (2008). Euler Equations: 250 Years On—Proceedings of an International Conference CrossRefzbMATHADSGoogle Scholar
  28. 28.
    Eyink, G.L., Spohn, H.: Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence. J. Stat. Phys. 70, 833–886 (1993) CrossRefzbMATHADSMathSciNetGoogle Scholar
  29. 29.
    Fisher, M.E., Nelson, D.R.: Spin flop, supersolids, and bicritical and tetracritical points. Phys. Rev. Lett. 32, 1350–1353 (1974) CrossRefADSGoogle Scholar
  30. 30.
    Fofonoff, N.P.: Steady flow in a frictionless homogeneous ocean. J. Mar. Res. 13, 254–262 (1954) MathSciNetGoogle Scholar
  31. 31.
    Hasegawa, A., Mima, K.: Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21, 87–92 (1978) CrossRefzbMATHADSMathSciNetGoogle Scholar
  32. 32.
    Hertel, P., Thirring, W.: Free energy of gravitating fermions. Commun. Math. Phys. 24, 22–36 (1971) CrossRefzbMATHADSMathSciNetGoogle Scholar
  33. 33.
    Hertel, P., Thirring, W.: Soluble model for a system with negative specific heat. Ann. Phys. 63, 520–533 (1971) CrossRefADSGoogle Scholar
  34. 34.
    Ispolatov, I., Cohen, E.G.D.: Phase transitions in systems with 1/r α attractive interactions. Phys. Rev. E 64(5), 056103 (2001) CrossRefADSGoogle Scholar
  35. 35.
    Kiessling, M.K.H.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure Appl. Math. 47, 27–56 (1993) CrossRefMathSciNetGoogle Scholar
  36. 36.
    Kiessling, M.K.H., Lebowitz, N.: The micro-canonical point vortex ensemble: beyond equivalence. Lett. Math. Phys. 42(1), 43–56 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Kiessling, M.K.H., Neukirch, T.: Negative specific heat of a magnetically self-confined plasma torus. Proc. Natl. Acad. Sci. 100, 1510–1514 (2003) CrossRefzbMATHADSMathSciNetGoogle Scholar
  38. 38.
    Kraichnan, R.H., Montgomery, D.: Two-dimensional turbulence. Rep. Prog. Phys. 43, 547–619 (1980) CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Landau, L.D., Lifshitz, E.M., Reichl, L.E.: Statistical physics, Part 1 (3rd edn.). Phys. Today 34, 74 (1981). doi: 10.1063/1.2889978 CrossRefADSGoogle Scholar
  40. 40.
    Lynden-Bell, D., Wood, R.: The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 138, 495 (1968) ADSGoogle Scholar
  41. 41.
    Macor, A., Doveil, F., Elskens, Y.: Electron climbing a “Devil’s Staircase” in wave-particle interaction. Phys. Rev. Lett. 95(26), 264102 (2005) CrossRefADSGoogle Scholar
  42. 42.
    Michel, J., Robert, R.: Large deviations for young measures and statistical mechanics of infinite dimensional dynamical systems with conservation law. Commun. Math. Phys. 159, 195–215 (1994) CrossRefzbMATHADSMathSciNetGoogle Scholar
  43. 43.
    Michel, J., Robert, R.: Statistical mechanical theory of the great red spot of Jupiter. J. Stat. Phys. 77, 645–666 (1994) CrossRefzbMATHADSGoogle Scholar
  44. 44.
    Miller, J.: Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 65(17), 2137–2140 (1990). doi: 10.1103/PhysRevLett.65.2137 CrossRefzbMATHADSMathSciNetGoogle Scholar
  45. 45.
    Naso, A., Chavanis, P.H., Dubrulle, B.: Statistical mechanics of Fofonoff flows in an oceanic basin. ArXiv e-prints (2009) Google Scholar
  46. 46.
    Naso, A., Chavanis, P.H., Dubrulle, B.: Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states. ArXiv e-prints (2009) Google Scholar
  47. 47.
    Padmanabhan, T.: Statistical mechanics of gravitating systems. Phys. Rep. 188, 285 (1990) CrossRefADSMathSciNetzbMATHGoogle Scholar
  48. 48.
    Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York/Berlin (1982), 636 p. Google Scholar
  49. 49.
    Ripa, P.: Symmetries and conservation laws for internal gravity waves. In: American Institute of Physics Conference Series. American Institute of Physics Conference Series, vol. 76, pp. 281–306 (1981) Google Scholar
  50. 50.
    Robert, R.: Etats d’equilibre statistique pour l’ecoulement bidimensionnel d’un fluide parfait. C. R. Acad. Sci. 1, 575–578 (1990) Google Scholar
  51. 51.
    Robert, R.: A maximum-entropy principle for two-dimensional perfect fluid dynamics. J. Stat. Phys. 65, 531–553 (1991) CrossRefzbMATHADSGoogle Scholar
  52. 52.
    Robert, R., Sommeria, J.: Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291–310 (1991) CrossRefzbMATHADSMathSciNetGoogle Scholar
  53. 53.
    Robert, R., Sommeria, J.: Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics. Phys. Rev. Lett. 69(19), 2776–2779 (1992) CrossRefzbMATHADSMathSciNetGoogle Scholar
  54. 54.
    Salmon, R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press, Oxford (1998) Google Scholar
  55. 55.
    Salmon, R., Holloway, G., Hendershott, M.C.: The equilibrium statistical mechanics of simple quasi-geostrophic models. J. Fluid Mech. 75, 691–703 (1976) CrossRefzbMATHADSGoogle Scholar
  56. 56.
    Smith, R.A., O’Neil, T.M.: Nonaxisymmetric thermal equilibria of a cylindrically bounded guiding-center plasma or discrete vortex system. Phys. Fluids B 2, 2961–2975 (1990) CrossRefADSGoogle Scholar
  57. 57.
    Stahl, B., Kiessling, M.K.H., Schindler, K.: Phase transitions in gravitating systems and the formation of condensed objects. Planet. Space Sci. 43, 271–282 (1995) CrossRefADSGoogle Scholar
  58. 58.
    Staniscia, F., Chavanis, P.H., De Ninno, G.: Out-of-equilibrium phase transitions in the HMF model: a closer look. ArXiv e-prints (2010) Google Scholar
  59. 59.
    Thirring, W.: Systems with negative specific heat. Z. Phys. 235, 339–352 (1970). doi: 10.1007/BF01403177 CrossRefADSGoogle Scholar
  60. 60.
    Touchette, H., Ellis, R.S., Turkington, B.: An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Physica A, Stat. Mech. Appl. 340, 138–146 (2004) CrossRefADSMathSciNetGoogle Scholar
  61. 61.
    Venaille, A., Bouchet, F.: Statistical ensemble inequivalence and bicritical points for two-dimensional flows and geophysical flows. Phys. Rev. Lett. 102(10), 104501 (2009) CrossRefADSGoogle Scholar
  62. 62.
    Venaille, A., Bouchet, F.: Solvable phase diagrams and ensemble inequivalence for two-dimensional and geophysical turbulent flows. ArXiv e-prints, submitted to Journal of Physical Oceanography (2010) Google Scholar
  63. 63.
    Wang, J., Vallis, G.K.: Emergence of Fofonoff states in inviscid and viscous ocean circulation models. J. Marine Res. 83–127 (1994) Google Scholar
  64. 64.
    Zou, J., Holloway, G.: Entropy maximization tendency in topographic turbulence. J. Fluid Mech. 263, 361–374 (1994) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.GFDL-AOSPrincetonUSA
  2. 2.Laboratoire de Physique, Ecole Normale Superieure de LyonUniversite de Lyon, CNRSLyon cedex 07France

Personalised recommendations