Skip to main content
Log in

The Solutions for the Boundary Layer Problem of Boltzmann Equation in a Half-Space

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the half space boundary layer problem for Boltzmann equation with cut-off potentials in all the cases −3<γ≤1, while the boundary condition is imposed on the incoming particles of Dirichlet type, and the solution is assumed to approach to a global Maxwellian at the far field. The same as for cut-off hard sphere model, there is an implicit solvability condition on the boundary data which gives the co-dimensions of the boundary data in terms of positive characteristic speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki, K., Nishino, K., Sone, Y., Sugimoto, H.: Numerical analysis of steady flows of a gas condensing on or evaporating from its plane condensed phase on the basis of kinetic theory: effect of gas motion along the condensed phase. Phys. Fluids A, Fluid Dyn. 3, 2260–2275 (1991)

    Article  MATH  ADS  Google Scholar 

  2. Bardos, C., Caflish, R.E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Commun. Pure Appl. Math. 49, 323–352 (1986)

    Article  Google Scholar 

  3. Bardos, C., Golse, F., Sone, Y.: Half-space problems for the Boltzmann equation: a survey. J. Stat. Phys. 124, 275–300 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Carleman, T.: Sur la théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math. 60, 91–142 (1932)

    Article  MathSciNet  Google Scholar 

  5. Cercignani, C.: Half-space problem in the kinetic theory of gases. In: Kröner, E., Kirchgässner, K. (eds.) Trends in Applications of Pure Mathematics to Mechanics, pp. 35–50. Springer, Berlin (1986)

    Chapter  Google Scholar 

  6. Cercignani, C., Illner, R., Purvelenti, M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)

    MATH  Google Scholar 

  7. Cercignani, C., Marra, R., Esposito, R.: The Milne problem with a force term. Transp. Theory Stat. Phys. 27(1), 1–33 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Chen, C.-C., Liu, T.P., Yang, T.: Existence of boundary layer solutions to the Boltzmann equation. Anal. Appl. 2, 337–363 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coron, F., Golse, F., Sulem, C.: A classification of well-posed kinetic layer problems. Commun. Pure Appl. Math. 41, 409–435 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Glassey, R.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  11. Golse, F.: Analysis of the boundary layer equation in the kinetic theory of gases. Bull. Inst. Math. Acad. Sin. 3, 211–242 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Golse, F., Poupaud, F.: Stationary solutions of the linearized Boltzmann equation in a half-space. Math. Methods Appl. Sci. 11, 483–502 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Golse, F., Perthame, B., Sentis, R.: Un résultat de compacité pour l’équation de transport et application au calcul de la limite de la valeur principale d’un opérateur de transport. C. R. Acad. Sci. 301, 341–344 (1985)

    MATH  MathSciNet  Google Scholar 

  14. Golse, F., Perthame, B., Sulem, C.: On a boundary layer problem for the nonlinear Boltzmann equation. Arch. Ration. Mech. Anal. 103(1), 81–96 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grad, H.: Asymptotic theory of the Boltzmann equation. In: Laurmann, J.A. (ed.) Rarefied Gas Dynamics, vol. 1, pp. 26–59. Academic Press, San Diego (1963)

    Google Scholar 

  16. Grad, H.: Singular and nonuniform limits of solutions of the Boltzmann equation. In: Bellman, R., Birkhoff, G., Abu-Shumays, I. (eds.) Transport Theory, pp. 269–308. AMS, Providence (1969)

    Google Scholar 

  17. Guo, Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sone, Y.: Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2002)

    Book  Google Scholar 

  19. Ukai, S., Yang, T., Yu, S.-H.: Nonlinear boundary layers of the Boltzmann equation: I, existence. Commun. Math. Phys. 236, 373–393 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Ukai, S., Yang, T., Yu, S.-H.: Nonlinear stability of boundary layers of the Boltzmann equation. I. The case . Commun. Math. Phys. 244, 99–109 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Wang, W.K., Yang, T., Yang, X.F.: Nonlinear stability of boundary layers of the Boltzmann equation for cutoff hard potentials. J. Math. Phys. 47, 083301 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wang, W.K., Yang, T., Yang, X.F.: Existence of boundary layers to the Boltzmann equation with cut-off soft potentials. J. Math. Phys. 48, 073304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yang, X.F.: Nonlinear stability of boundary layers for the Boltzmann equation with cutoff soft potentials. J. Math. Anal. Appl. 345, 941–953 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongfeng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X. The Solutions for the Boundary Layer Problem of Boltzmann Equation in a Half-Space. J Stat Phys 143, 168–196 (2011). https://doi.org/10.1007/s10955-011-0158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0158-2

Keywords

Navigation