Skip to main content

Quantum Jarzynski-Sagawa-Ueda Relations


We consider a (small) quantum mechanical system which is operated by an external agent, who changes the Hamiltonian of the system according to a fixed scenario. In particular we assume that the agent (who may be called a demon) performs measurement followed by feedback, i.e., it makes a measurement of the system and changes the protocol according to the outcome. We extend to this setting the generalized Jarzynski relations, recently derived by Sagawa and Ueda for classical systems with feedback. One of the two relations by Sagawa and Ueda is derived here in error-free quantum processes, while the other is derived only when the measurement process involves classical errors. The first relation leads to a second law which takes into account the efficiency of the feedback.

This is a preview of subscription content, access via your institution.


  1. Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993)

    Article  MATH  ADS  Google Scholar 

  2. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995). arXiv:chao-dyn/9410007

    Article  ADS  Google Scholar 

  3. Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999). arXiv:cond-mat/9901352

    Article  ADS  Google Scholar 

  4. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690 (1997). arXiv:cond-mat/9610209

    Article  ADS  Google Scholar 

  5. Sagawa, T., Ueda, M.: Second law of thermodynamics with discrete quantum feedback control. Phys. Rev. Lett. 100, 80403 (2008). arXiv:0710.0956

    Article  ADS  Google Scholar 

  6. Sagawa, T., Ueda, M.: Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 104, 90602 (2010). arXiv:0907.4914

    Article  ADS  Google Scholar 

  7. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E., Sano, M.: Experimental demonstration of information-to-energy conservation and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988–992 (2010). arXiv:1009.5287

    Article  Google Scholar 

  8. Campisi, M., Talkner, P., Hänggi, P.: Fluctuation theorems for continuously monitored quantum fluxes. Phys. Rev. Lett. 105, 140601 (2010). arXiv:1006.1542

    Article  ADS  Google Scholar 

  9. Horowitz, J.M., Vaikuntanathan, S.: Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. Preprint (2010). arXiv:1011.4273

  10. Tasaki, H.: Jarzynski relations for quantum systems and some applications (2000, unpublished note). arXiv:cond-mat/0009244

  11. Kurchan, J.: A quantum fluctuation theorem. Preprint (2000). arXiv:cond-mat/0007360

  12. Sagawa, T.: Private communication

  13. Terashima, H., Ueda, M.: Hermitian conjugate measurement. Phys. Rev. A 81, 1094–1622 (2010). arXiv:0709.1210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hal Tasaki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morikuni, Y., Tasaki, H. Quantum Jarzynski-Sagawa-Ueda Relations. J Stat Phys 143, 1–10 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Jarzynski relation
  • Feedback
  • Measurement
  • Quantum system