Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of Statistical Physics
  3. Article

Condensation in the Inclusion Process and Related Models

  • Open access
  • Published: 23 February 2011
  • volume 142, pages 952–974 (2011)
Download PDF

You have full access to this open access article

Journal of Statistical Physics Aims and scope Submit manuscript
Condensation in the Inclusion Process and Related Models
Download PDF
  • Stefan Grosskinsky1,
  • Frank Redig2 &
  • Kiamars Vafayi3 
  • 598 Accesses

  • 42 Citations

  • Explore all metrics

Cite this article

Abstract

We study condensation in several particle systems related to the inclusion process. For an asymmetric one-dimensional version with closed boundary conditions and drift to the right, we show that all but a finite number of particles condense on the right-most site. This is extended to a general result for independent random variables with different tails, where condensation occurs for the index (site) with the heaviest tail, generalizing also previous results for zero-range processes. For inclusion processes with homogeneous stationary measures we establish condensation in the limit of vanishing diffusion strength in the dynamics, and give several details about how the limit is approached for finite and infinite systems. Finally, we consider a continuous model dual to the inclusion process, the so-called Brownian energy process, and prove similar condensation results.

Article PDF

Download to read the full article text

Similar content being viewed by others

Condensation of SIP Particles and Sticky Brownian Motion

Article Open access 25 May 2021

Mario Ayala, Gioia Carinci & Frank Redig

Condensation and Extremes for a Fluctuating Number of Independent Random Variables

Article 07 January 2021

Claude Godrèche

Condensation of Non-reversible Zero-Range Processes

Article 10 February 2019

Insuk Seo

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Giardina, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135, 25–55 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Giardina, C., Redig, F., Vafayi, K.: Correlation inequalities for interacting particle systems with duality. J. Stat. Phys. (2010). doi:10.1007/s10955-010-0055-0. Preprint available at arXiv:0906.4664

    MathSciNet  Google Scholar 

  3. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  4. Evans, M.R.: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30(1), 42–57 (2000)

    Article  Google Scholar 

  5. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A: Math. Gen. 38, R195–R240 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Krug, J., Ferrari, P.A.: Phase transitions in driven diffusive systems with random rates. J. Phys. A: Math. Gen. 29, L465–L471 (1996)

    Article  ADS  Google Scholar 

  7. Landim, C.: Hydrodynamic limit for space inhomogeneous one-dimensional totally asymmetric zero-range processes. Ann. Prob. 24(2), 599–638 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Andjel, E.D., Ferrari, P.A., Guiol, H., Landim, C.: Convergence to the maximal invariant measure for a zero-range process with random rates. Stoch. Proc. Appl. 90, 67–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferrari, P.A., Sisko, V.: Escape of mass in zero-range processes with random rates. In: Asymptotics: Particles, Processes and Inverse Problems. IMS Lecture Notes, vol. 55, pp. 108–120. Springer, Berlin (2007)

    Chapter  Google Scholar 

  10. Grosskinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113(3/4), 389–410 (2003)

    Article  MATH  Google Scholar 

  11. Godreche, C., Luck, J.M.: Dynamics of the condensate in zero-range processes. J. Phys. A 38, 7215–7237 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  12. Ferrari, P.A., Landim, C., Sisko, V.: Condensation for a fixed number of independent random variables. J. Stat. Phys. 128(5), 1153–1158 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Armendáriz, I., Loulakis, M.: Thermodynamic limit for the invariant measures in supercritical zero range processes. Prob. Theory Rel. Fields 145(1–2), 175–188 (2009)

    Article  MATH  Google Scholar 

  14. Beltran, J., Landim, C.: Metastability of reversible condensed zero range processes on a finite set. arXiv:0910.4089

  15. Andjel, E.D.: Invariant measures for the zero range process. Ann. Probability 10(3), 525–547 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grosskinsky, S., Schütz, G.M.: Discontinuous condensation transition and nonequivalence of ensembles in a zero-range process. J. Stat. Phys. 132(1), 77–108 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Schwarzkopf, Y., Evans, M.R., Mukamel, D.: Zero-range processes with multiple condensates: statics and dynamics. J. Phys. A: Math. Theor. 41, 205001 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Jeon, I., March, P., Pittel, B.: Size of the largest cluster under zero-range invariant measures. Ann. Probab. 28(3), 1162–1194 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jeon, I.: Phase transition for perfect condensation and instability under the perturbations on jump rates of the zero-range process. J. Phys. A: Math. Theor. 43, 235002 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  20. Giardina, C., Kurchan, J., Redig, F.: Duality and exact correlations for a model of heat conduction. J. Math. Phys. 48, 033301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  21. Bernardin, C.: Superdiffusivity of asymmetric energy model in dimensions 1 and 2. J. Math. Phys. 49(10), 103301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  22. Zielen, F., Schadschneider, A.: Broken ergodicity in a stochastic model with condensation. Phys. Rev. Lett. 89, 090601 (2002)

    Article  ADS  Google Scholar 

  23. Majumdar, S.N., Evans, M.R., Zia, R.K.P.: The nature of the condensate in mass transport models. Phys. Rev. Lett. 94, 180601 (2005)

    Article  ADS  Google Scholar 

  24. Evans, M.R., Majumdar, S.N., Zia, R.K.P.: Factorised steady states in mass transport models on an arbitrary graph. J. Phys. A: Math. Gen. 39, 4859–4873 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK

    Stefan Grosskinsky

  2. IMAPP, Radboud University Nijmegen, Heyendaalse weg 135, 6525 AJ, Nijmegen, The Netherlands

    Frank Redig

  3. Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands

    Kiamars Vafayi

Authors
  1. Stefan Grosskinsky
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Frank Redig
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Kiamars Vafayi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Kiamars Vafayi.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Grosskinsky, S., Redig, F. & Vafayi, K. Condensation in the Inclusion Process and Related Models. J Stat Phys 142, 952–974 (2011). https://doi.org/10.1007/s10955-011-0151-9

Download citation

  • Received: 24 September 2010

  • Accepted: 07 February 2011

  • Published: 23 February 2011

  • Issue Date: March 2011

  • DOI: https://doi.org/10.1007/s10955-011-0151-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Inclusion process
  • Condensation
  • Brownian energy process
  • Zero-range process
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature