Skip to main content
Log in

Simple Model Study of Phase Transition Properties of Isolated and Aggregated Protein

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the phase transition properties of isolated and aggregated protein by exhaustive numerical study in the confined conformation space with maximally compact lattice model. The study within the confined conformation space shows some general folding properties. Various sequences show different folding properties: two-state folding, three-state folding and prion-like folding behavior. We find that the aggregated protein holds a more evident transition than isolated one and the transition temperature is generally lower than that in isolated case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glenner, G.: Amyloid deposits and amyloidosis: the B-fibrilloses. N. Engl. J. Med. 302, 1283 (1980)

    Article  Google Scholar 

  2. Blake, C., Serpell, L.: Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous Â-sheet helix. Structure 4(8), 989 (1996)

    Article  Google Scholar 

  3. McKintosh, E., Tabrizi, S.J., Collinge, J.: Prion diseases. J. Neurovirol. 9, 183 (2003)

    Google Scholar 

  4. Ross, C.A., Poirier, M.A.: Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10 (2004)

    Article  Google Scholar 

  5. Buyong, M., Ruth, N.: Molecular dynamics simulations of alanine rich-sheet oligomers: Insight into amyloid formation. Protein Sci. 11, 2335 (2002)

    Google Scholar 

  6. Zhou, H.J., Zhou, J., Ou-Yang, Z.C., Kumar, S.: Collapse transition of two-dimensional flexible and semiflexible polymers. Phys. Rev. Lett. 97, 158302 (2006)

    Article  ADS  Google Scholar 

  7. Sherman, E., Haran, G.: Coil-globule transition in the denatured state of a small protein. Proc. Natl. Acad. Sci. USA 103, 11539 (2006)

    Article  ADS  Google Scholar 

  8. Baldwin, R.L.: The nature of protein folding pathways: The classical versus the new view. J. Biomol. NMR 5, 103 (1995)

    Article  MathSciNet  Google Scholar 

  9. Wolynes, P.G., Onuchic, J.N., Thirumalai, D.: Navigating the folding routes. Science 267, 1619 (1995)

    Article  ADS  Google Scholar 

  10. Bryngelson, J.D., Wolynes, P.G.: Intermediates and barrier crossing in a random energy model (with applications to protein folding). J. Phys. Chem. 93, 6902 (1989)

    Article  Google Scholar 

  11. Garcia-Mira, M.M., Sadqi, M., Fischer, M., Sanchez, J.M.: Experimental identification of downhill protein folding. Science 298, 2191 (2002)

    Article  ADS  Google Scholar 

  12. Dyer, R.B.: Ultrafast and downhill protein folding. Curr. Opin. Struct. Biol. 17(1), 38 (2007)

    Article  Google Scholar 

  13. Dinner, A., Slai, A., Karplus, M., Shakhnovich, E.: Phase diagram of a model protein derived by exhaustive enumeration of the conformations. J. Chem. Phys. 101, 1444 (1994)

    Article  ADS  Google Scholar 

  14. Giugliarellia, G., Micheletti, C., Banavar, J.R., Maritan, A.: Compactness, aggregation, and prionlike behavior of protein: A lattice model study. J. Chem. Phys. 113, 5072 (2000)

    Article  ADS  Google Scholar 

  15. Broglia, R.A., Tiana, G., Pasquali, S., Roman, H.E., Vigezzi, E.: Folding and aggregation of designed proteins. Proc. Natl. Acad. Sci. USA 95, 12930 (1998)

    Article  ADS  Google Scholar 

  16. Harrison, P.M., Chan, H.S., Prusiner, S.B., Cohen, F.E.: Conformational propagation with prion-like characteristics in a simple model of protein folding. Protein Sci. 10, 819 (2001)

    Article  Google Scholar 

  17. Dima, R.I., Thirumalai, D.: Exploring protein aggregation and self-propagation using lattice models: Phase diagram and kinetics. Protein Sci. 11, 1036 (2002)

    Article  Google Scholar 

  18. Gupta, P., Hall, C.K., Voegler, A.C.: Effect of denaturant and protein concentrations upon protein refolding and aggregation: A simple lattice model. Protein Sci. 7, 2642 (1998)

    Article  Google Scholar 

  19. Li, M.S., Klimov, D.K., Straub, J.E., Thirumalai, D.: Probing the mechanisms of fibril formation using lattice models. J. Chem. Phys. 129, 175101 (2008)

    Article  ADS  Google Scholar 

  20. Banavar, J.R., Cieplak, M., Maritan, A.: Lattice tube model of proteins. Phys. Rev. Lett. 93, 238101 (2004)

    Article  ADS  Google Scholar 

  21. Banavar, J.R., Maritan, A.: Physics of proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 261 (2007)

    Article  Google Scholar 

  22. Maritan, A., Micheletti, C., Trovato, A., Banavar, J.R.: Optimal shapes of compact strings. Nature 406, 287 (2000)

    Article  ADS  Google Scholar 

  23. Luheshi, L.M., Crowther, D.C., Dobson, C.M.: Protein misfolding and disease: from the test tube to the organism. Curr. Opin. Chem. Biol. 12, 25 (2008)

    Article  Google Scholar 

  24. Thirumalai, D., Klimov, D.K., Dima, R.I.: Emerging ideas on the molecular basis of protein and peptide aggregation. Curr. Opin. Struct. Biol. 13, 1 (2003)

    Article  Google Scholar 

  25. Dill, K.A.: Theory for the folding and stability of globular proteins. Biochemistry 24(6), 1501 (1985)

    Article  Google Scholar 

  26. Salvi, G., Rios, P.D.L.: Effective interactions cannot replace solvent effects in a lattice model of proteins. Phys. Rev. Lett. 91, 258102 (2003)

    Article  ADS  Google Scholar 

  27. Orly, N.B., Ron, U., Amnon, H.: Analysing the origin of long-range interactions in proteins using lattice models. BMC Struct. Biol. 9, 4 (2009)

    Article  Google Scholar 

  28. Zhao, X.C.: Advances on protein folding simulations based on the lattice HP models with natural computing. Appl. Soft Comput. 8, 1029 (2008)

    Article  Google Scholar 

  29. Liu, Y.X., Prem, P.C., Jose, L.P., Bernard, S.G.: Lattice model simulation of interchain protein interactions and the folding dynamics and dimerization of the GCN4 Leucine zipper. J. Chem. Phys. 128, 045106 (2008)

    Article  ADS  Google Scholar 

  30. Li, H., Helling, R., Tang, C., Wingreen, N.S.: Emergence of preferred structures in a simple model of protein folding. Science 273, 666 (1996)

    Article  ADS  Google Scholar 

  31. Li, Y.Q., Ji, Y.Y., Mao, J.W., Tang, X.W.: Medium effects on the selection of sequences folding into stable proteins in a simple model. Phys. Rev. E 72, 021904 (2005)

    Article  ADS  Google Scholar 

  32. Ji, Y.Y., Li, Y.Q., Mao, J.W., Tang, X.W.: Model study of prionlike folding behavior in aggregated proteins. Phys. Rev. E 72, 041912 (2005)

    Article  ADS  Google Scholar 

  33. Ji, Y.Y., Li, Y.Q.: The role of secondary structure in protein structure selection. Eur. Phys. J. E 32, 103 (2010)

    Article  Google Scholar 

  34. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1 (1959)

    Article  Google Scholar 

  35. Wind, A.F., Kemp, J.P., Ermoshkin, A.V., Chen, J.Z.Y.: Structural and folding properties of a lattice prion model. Phys. Rev. E 66, 031909 (2002)

    Article  ADS  Google Scholar 

  36. Lemak, A.S., Lepock, J.R., Chen, J.Z.Y.: Unfolding proteins in an external field: Can we always observe the intermediate states? Phys. Rev. E 67, 031910 (2003)

    Article  ADS  Google Scholar 

  37. Li, A., Daggett, V.: Characterization of the transition state of protein unfolding by use of molecular dynamics: chymotrypsin inhibitor 2. Proc. Natl. Acad. Sci. USA 91, 10430 (1994)

    Article  ADS  Google Scholar 

  38. Lazaridis, T., Karplus, M.: “New View” of protein folding reconciled with the old through multiple unfolding simulations. Science 278, 1997 (1928)

    Google Scholar 

  39. Daggett, V., Fersht, A.: The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 4, 497 (2003)

    Article  Google Scholar 

  40. Wong, K.B., Clarke, J. Bond C.J., et al.: Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding. J. Mol. Biol. 296, 1257 (2000)

    Article  Google Scholar 

  41. Li, A., Daggett, V.: Molecular dynamics simulation of the unfolding of barnase: characterization of the major intermediate. J. Mol. Biol. 275, 677 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Yun Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, YY., Yi, WQ. & Zhang, LX. Simple Model Study of Phase Transition Properties of Isolated and Aggregated Protein. J Stat Phys 142, 975–983 (2011). https://doi.org/10.1007/s10955-011-0148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0148-4

Keywords

Navigation