Skip to main content
Log in

Space as a Low-Temperature Regime of Graphs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

I define a statistical model of graphs in which 2-dimensional spaces arise at low temperature. The configurations are given by graphs with a fixed number of edges and the Hamiltonian is a simple, local function of the graphs. Simulations show that there is a transition between a low-temperature regime in which the graphs form triangulations of 2-dimensional surfaces and a high-temperature regime, where the surfaces disappear. I use data for the specific heat and other observables to discuss whether this is a phase transition. The surface states are analyzed with regard to topology and defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishibashi, N., Kawai, H., Kitazawa, Y., Tsuchiya, A.: A large-N reduced model as superstring. Nucl. Phys. B 498, 467 (1997). arXiv:hep-th/9612115

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Banks, T., Fischler, W., Shenker, S.H., Susskind, L.: M theory as a matrix model: A conjecture. Phys. Rev. D, Part. Fields 55, 5112 (1997). arXiv:hep-th/9610043

    Article  MathSciNet  ADS  Google Scholar 

  3. Steinacker, H.: Emergent geometry and gravity from matrix models: an introduction. Class. Quantum Gravity 27, 133001 (2010). arXiv:1003.4134 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  4. Smolin, L.: Matrix universality of gauge field and gravitational dynamics. arXiv:0803.2926 [hep-th]

  5. Huggett, S.A., Tod, K.P.: An Introduction to Twistor Theory. London Mathematical Society Student Texts, vol. 4. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  6. Penrose, R., Rindler, W.: Spinors and Space–Time; Vol. 2, Spinor and Twistor Methods in Space-Time Geometry. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  7. Ambjorn, J., Jurkiewicz, J., Loll, R.: Causal dynamical triangulations and the quest for quantum gravity. arXiv:1004.0352 [hep-th]

  8. Ambjorn, J., Jurkiewicz, J., Loll, R.: Quantum gravity, or the art of building spacetime. arXiv:hep-th/0604212

  9. Hamber, H.W.: Quantum Gravity on the Lattice. Gen. Relativ. Gravit. 41, 817 (2009). arXiv:0901.0964 [gr-qc]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  11. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  12. Perez, A.: Spin foam models for quantum gravity. Class. Quantum Gravity 20, R43 (2003). arXiv:gr-qc/0301113

    Article  MATH  ADS  Google Scholar 

  13. Konopka, T., Markopoulou, F., Smolin, L.: Quantum graphity. arXiv:hep-th/0611197

  14. Konopka, T., Markopoulou, F., Severini, S.: Quantum graphity: a model of emergent locality. Phys. Rev. D, Part. Fields 77, 104029 (2008). arXiv:0801.0861 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  15. Konopka, T.: Statistical Mechanics of Graphity Models. Phys. Rev. D, Part. Fields 78, 044032 (2008). arXiv:0805.2283 [hep-th]

    Article  ADS  Google Scholar 

  16. Konopka, T.: Matter in toy dynamical geometries. J. Phys. Conf. Ser. 174, 012051 (2009). arXiv:0903.4342 [gr-qc]

    Article  ADS  Google Scholar 

  17. Hamma, A., Markopoulou, F., Lloyd, S., Caravelli, F., Severini, S., Markstrom, K.: A quantum Bose–Hubbard model with evolving graph as toy model for emergent spacetime. Phys. Rev. D 81, 104032 (2010). arXiv:0911.5075 [gr-qc]

    Article  ADS  Google Scholar 

  18. Caravelli, F., Markopoulou, F.: Properties of quantum graphity at low temperature. arXiv:1008.1340 [gr-qc]

  19. Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics. Clarendon, Oxford (1999)

    MATH  Google Scholar 

  20. Young, A.P.: Spin Glasses and Random Fields. World Scientific, Singapore (1998)

    Google Scholar 

  21. Hartmann, A.K., Ricci-Tersenghi, F.: Direct sampling of complex landscapes at low temperatures: the three-dimensional +/−J Ising spin glass. Phys. Rev. B, Solid State 66, 224419 (2002). arXiv:cond-mat/0108307

    Article  ADS  Google Scholar 

  22. Moreno, J.J., Katzgraber, H.G., Hartmann, A.K.: Finding low-temperature states with parallel tempering, simulated annealing and simple Monte Carlo. Int. J. Mod. Phys. C 14, 285 (2003). arXiv:cond-mat/0209248

    Article  ADS  Google Scholar 

  23. Veldhuizen, T.L.: Dynamic multilevel graph visualization. arXiv:0712.1549 [cs.GR]

  24. http://www.florianconrady.com/simulations.html

  25. Ahlfors, L.V., Sario, L.: Riemann Surfaces. Princeton University Press, Princeton (1960)

    MATH  Google Scholar 

  26. Janke, W., Johnston, D.A., Weigel, M.: Two-dimensional quantum gravity—a laboratory for fluctuating graphs and quenched connectivity disorder. Condens. Matter Phys. 9, 263 (2006)

    Google Scholar 

  27. Reisenberger, M., Rovelli, C.: Spin foams as Feynman diagrams. arXiv:gr-qc/0002083

  28. Reisenberger, M.P., Rovelli, C.: Spacetime as a Feynman diagram: The connection formulation. Class. Quantum Gravity 18, 121 (2001). arXiv:gr-qc/0002095

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Oriti, D.: The group field theory approach to quantum gravity. arXiv:gr-qc/0607032

  30. Rovelli, C., Vidotto, F.: Single particle in quantum gravity and BGS entropy of a spin network. Phys. Rev. D, Part. Fields 81, 044038 (2010). arXiv:0905.2983 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Conrady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrady, F. Space as a Low-Temperature Regime of Graphs. J Stat Phys 142, 898–917 (2011). https://doi.org/10.1007/s10955-011-0135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0135-9

Keywords

Navigation