Skip to main content
Log in

Novel Computation of the Growth Rate of Generalized Random Fibonacci Sequences

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new formulation is proposed for the computation of average growth rates of generalized random Fibonacci sequences. Based on the new formula, a novel numerical scheme is designed and successfully implemented, and interesting analytic asymptotic expansions are obtained for several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z.-S.: On the cycle expansion for the Lyapunov exponent of a product of random matrices. J. Phys. A 40, 8315–8328 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Ben-Naim, E., Krapivsky, P.L.: Weak disorder in Fibonacci sequences. J. Phys. A 39, L301–L307 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Crisanti, A., Paladin, G., Serva, M., Vulpiani, A.: Products of random matrices for disordered systems. Phys. Rev. E 49(2), R953 (1994)

    Article  ADS  Google Scholar 

  4. Derrida, B., Hilhorst, H.J.: Scaling behavior of certain infinite products of random 2×2 matrices. J. Phys. A 16, 2641–2654 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Derrida, B., Jacobsen, J.L., Zeitak, R.: Lyapunov exponents and density of states of a one-dimensional non-Hermitian Schrödinger equation. J. Stat. Phys. 98(1/2), 31 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Diaconis, P., Freedman, D.: Iterated random functions. SIAM Rev. 41(1), 45–76 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Douady, S., Couder, Y.: Phyllotaxis as a physical self-organized growth process. Phys. Rev. Lett. 68(13), 2098 (1992)

    Article  ADS  Google Scholar 

  8. Dyson, F.J.: The dynamics of a disordered linear chain. Phys. Rev. 92(6), 1331 (1953)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Embree, M., Trefethen, L.N.: Growth and decay of random Fibonacci sequences. Proc. R. Soc. Lond. A 455, 2471 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Feinberg, J., Zee, A.: Non-Hermitian localization and delocalization. Phys. Rev. E 59(6), 6433 (1999)

    Article  ADS  Google Scholar 

  11. Furstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108(3), 377–428 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldsheid, I.Y., Khoruzhenko, B.A.: Distribution of eigenvalues in non-Hermitian Anderson models. Phys. Rev. Lett. 80(13), 2897 (1998)

    Article  ADS  Google Scholar 

  13. Hatano, N., Nelson, D.R.: Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B 56(14), 8651 (1997)

    Article  ADS  Google Scholar 

  14. Kohmoto, M., Kadanoff, L.P., Tang, C.: Localization problem in one dimension: mapping and escape. Phys. Rev. Lett. 50, 1870 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  15. Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York (2001)

    Book  MATH  Google Scholar 

  16. Mainieri, R.: Zeta function for the Lyapunov exponent of a product of random matrices. Phys. Rev. Lett. 68(13), 1965 (1992)

    Article  ADS  Google Scholar 

  17. Nelson, D.R., Shnerb, N.M.: Non-Hermitian localization and population biology. Phys. Rev. E 58(2), 1383 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  18. Newell, A.C., Shipman, P.D.: Plants and Fibonacci. J. Stat. Phys. 121(516), 937 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  20. Schmidt, H.: Disordered one-dimensional crystals. Phys. Rev. 105(2), 425 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Sire, C., Krapivsky, P.L.: Random Fibonacci sequences. J. Phys. A 34, 9065–9083 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Vanneste, J.: Estimating generalized Lyapunov exponents for products of random matrices. Phys. Rev. E 81, 036701 (2010)

    Article  ADS  Google Scholar 

  23. Viswanath, D.: Random Fibonacci sequences and the number 1.13198824… . Math. Comput. 69(231), 1131–1155 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  24. Wright, T.G., Trefethen, L.N.: Computing Lyapunov constants for random recurrences with smooth coefficients. J. Comput. Appl. Math. 132, 331–340 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Zheng, W.: Global scaling properties of the spectrum for the Fibonacci chains. Phys. Rev. A 35, 1467 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueheng Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, Y. Novel Computation of the Growth Rate of Generalized Random Fibonacci Sequences. J Stat Phys 142, 847–861 (2011). https://doi.org/10.1007/s10955-011-0132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0132-z

Keywords

Navigation