Relaxation of a Free-Molecular Gas to Equilibrium Caused by Interaction with Vessel Wall

Abstract

A free-molecular gas contained in a static vessel with a uniform temperature is considered. The approach of the velocity distribution function of the gas molecules from a given initial distribution to the uniform equilibrium state at rest is investigated numerically under the diffuse reflection boundary condition. This relaxation is caused by the interaction of gas molecules with the vessel wall. It is shown that, for a spherical vessel, the velocity distribution function approaches the final uniform equilibrium distribution in such a way that their difference decreases in proportion to an inverse power of time. This is slower than the known result for a rarefied gas with molecular collisions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Desvillettes, L.: Convergence to equilibrium in large time for Boltzmann and B.G.K. equations. Arch. Ration. Mech. Anal. 110, 73–91 (1990)

    MATH  Article  MathSciNet  Google Scholar 

  2. 2.

    Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. I. J. Math. Kyoto Univ. 34, 391–427 (1994)

    MATH  MathSciNet  Google Scholar 

  3. 3.

    Arkeryd, L., Nouri, A.: Boltzmann asymptotics with diffuse reflection boundary conditions. Monatshefte Math. 123, 285–298 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 1, pp. 71–305. Elsevier, Amsterdam (2002)

    Google Scholar 

  5. 5.

    Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation. Invent. Math. 159, 245–316 (2005)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  6. 6.

    Villani, C.: Convergence to equilibrium: Entropy production and hypocoercivity. In: Capitelli, M. (ed.) Rarefied Gas Dynamics, pp. 8–25. AIP, Melville (2005)

    Google Scholar 

  7. 7.

    Mouhot, C., Neumann, L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19, 969–998 (2006)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  8. 8.

    Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, 950 (2009)

    MathSciNet  Google Scholar 

  9. 9.

    Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. (2009). doi:10.1007/s00205-009-0285-y

    Google Scholar 

  10. 10.

    Ukai, S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Jpn. Acad. 50, 179–184 (1974)

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    Caflisch, R.E.: The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic. Commun. Math. Phys. 74, 97–109 (1980)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  12. 12.

    Lebowitz, J.L., Frisch, H.L.: Model of nonequilibrium ensemble: Knudsen gas. Phys. Rev. 107, 917–923 (1957)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  13. 13.

    Arkeryd, L., Ianiro, N., Triolo, L.: The trend to a stationary state for the Lebowitz stick model. Math. Methods Appl. Sci. 16, 739–757 (1993)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  14. 14.

    Bose, C., Grzegorczyk, P., Illner, R.: Asymptotic behavior of one-dimensional discrete-velocity models in a slab. Arch. Ration. Mech. Anal. 127, 337–360 (1994)

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Yu, S.-H.: Stochastic formulation for the initial-boundary value problems of the Boltzmann equation. Arch. Ration. Mech. Anal. 192, 217–274 (2009)

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    Desvillettes, L., Salvarani, S.: Asymptotic behavior of degenerate linear transport equations. Bull. Sci. Math. 133, 848–858 (2009)

    MATH  Article  MathSciNet  Google Scholar 

  17. 17.

    Callen, H.B.: Thermodynamics. Wiley, New York (1960). Chap. 6, Sect. 6.1

    Google Scholar 

  18. 18.

    Feller, W.: On the integral equation of renewal theory. Ann. Math. Stat. 12, 243–267 (1941)

    MATH  Article  MathSciNet  Google Scholar 

  19. 19.

    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. Wiley, New York (1971). Chap. XI

    Google Scholar 

  20. 20.

    Babovsky, H.: On Knudsen flows within thin tubes. J. Stat. Phys. 44, 865–878 (1986)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  21. 21.

    Babovsky, H., Bardos, C., Platkowski, T.: Diffusion approximation for a Knudsen gas in a thin domain with accommodation on the boundary. Asymptot. Anal. 3, 265–289 (1991)

    MathSciNet  Google Scholar 

  22. 22.

    Golse, F.: Anomalous diffusion limit for the Knudsen gas. Asymptot. Anal. 17, 1–12 (1998)

    MATH  MathSciNet  Google Scholar 

  23. 23.

    Caprino, S., Marchioro, C., Pulvirenti, M.: Approach to equilibrium in a microscopic model of friction. Commun. Math. Phys. 264, 167–189 (2006)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  24. 24.

    Caprino, S., Cavallaro, G., Marchioro, C.: On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17, 1369–1403 (2007)

    MATH  Article  MathSciNet  Google Scholar 

  25. 25.

    Aoki, K., Cavallaro, G., Marchioro, C., Pulvirenti, M.: On the motion of a body in thermal equilibrium immersed in a perfect gas. Math. Model. Numer. Anal. 42, 263–275 (2008)

    MATH  Article  MathSciNet  Google Scholar 

  26. 26.

    Aoki, K., Tsuji, T., Cavallaro, G.: Approach to steady motion of a plate moving in a free-molecular gas under a constant external force. Phys. Rev. E 80, 016309 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazuo Aoki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsuji, T., Aoki, K. & Golse, F. Relaxation of a Free-Molecular Gas to Equilibrium Caused by Interaction with Vessel Wall. J Stat Phys 140, 518–543 (2010). https://doi.org/10.1007/s10955-010-9997-5

Download citation

Keywords

  • Free-molecular gas
  • Approach to equilibrium
  • Diffuse reflection
  • Kinetic theory of gases