Akemann, G., Vernizzi, G.: Macroscopic and microscopic (non-)universality of compact support random matrix theory. Nucl. Phys. B 583(3), 739–757 (2000)
MATH
Article
MathSciNet
ADS
Google Scholar
Akemann, G., Cicuta, G.M., Molinari, L., Vernizzi, G.: Compact support probability distributions in random matrix theory. Phys. Rev. E 59(2), 1489–1497 (1999)
Article
MathSciNet
ADS
Google Scholar
Akemann, G., Cicuta, G.M., Molinari, L., Vernizzi, G.: Nonuniversality of compact support probability distributions in random matrix theory. Phys. Rev. E 60(5), 5287–5292 (1999)
Article
MathSciNet
ADS
Google Scholar
Balian, R.: Random matrices and information theory. Nuovo Cimento B 57, 183–193 (1968)
Article
ADS
Google Scholar
Bleher, P., Its, A.: Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. Math. 150, 185–266 (1999)
MATH
Article
MathSciNet
Google Scholar
Brezin, E., Zee, A.: Universality of the correlations between eigenvalues of large random matrices. Nucl. Phys. B 402, 613–627 (1993)
MATH
Article
MathSciNet
ADS
Google Scholar
Bronk, B.V.: Topics in the theory of Random Matrices. Thesis, Princeton University (unpublished), a quote in Chapter 27 of Mehta’s book “Random Matrices”, 3rd edn.
Deift, P., Gioev, D.: Universality in random matrix theory for orthogonal and symplectic ensembles. Int. Math. Res. Pap. 2007, rpm004 (2007)
MathSciNet
Google Scholar
Deift, P., Gioev, D.: Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices. Commun. Pure Appl. Math. 60, 867–910 (2007)
MATH
Article
MathSciNet
Google Scholar
Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999)
MATH
Article
MathSciNet
Google Scholar
Delannay, R., LeCaër, G.: Exact densities of states of fixed trace ensembles of random matrices. J. Phys. A 33, 2611–2630 (2000)
MATH
Article
MathSciNet
ADS
Google Scholar
Dyson, F.J.: Statistical theory of the energy levels of complex systems III. J. Math. Phys. 3, 166–175 (1962)
Article
MathSciNet
ADS
Google Scholar
Erdős, L., Péché, S., Ramírez, J.A., Schlein, B., Yau, H.T.: Bulk universality for Wigner matrices. arXiv:0905.4176 [math-ph]
Erdős, L., Ramírez, J., Schlein, B., Tao, T., Vu, V., Yau, H.-T.: Bulk universality for Wigner hermitian matrices with subexponential decay. arXiv:0906.4400
Erdős, L., Schlein, B., Yau, H.-T.: Universality of random matrices and local relaxation flow. arXiv:0907.5605
Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402, 709–728 (1993)
MATH
Article
MathSciNet
ADS
Google Scholar
Götze, F., Gordin, M.: Limit correlation functions for fixed trace random matrix ensembles. Commun. Math. Phys. 281, 203–229 (2008)
MATH
Article
ADS
Google Scholar
Götze, F., Gordin, M., Levina, A.: Limit correlation function at zero for fixed trace random matrix ensembles. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 341, 68–80 (2007) (Russian). Translation to appear in J. Math. Sci. (N.Y.) 145(3) (2007)
MATH
Google Scholar
Guhr, T.: Norm-dependent random matrix ensembles in external field and supersymmetry. J. Phys. A, Math. Gen. 39, 12327–12342 (2006)
MATH
Article
MathSciNet
ADS
Google Scholar
Guhr, T.: Arbitrary rotation invariant matrix ensembles and supersymmetry. J. Phys. A, Math. Gen. 39, 13191–13223 (2006)
MATH
Article
MathSciNet
ADS
Google Scholar
Johansson, K.: Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Commun. Math. Phys. 215(3), 683–705 (2001)
MATH
Article
MathSciNet
ADS
Google Scholar
LeCaër, G., Delannay, R.: The fixed-trace β-Hermite ensemble of random matrices and the low temperature distribution of the determinant of an N×N
β-Hermite matrix. J. Phys. A 40, 1561–1584 (2007)
Article
MathSciNet
ADS
Google Scholar
Liu, D.-Z., Zhou, D.-S.: Local statistical properties of Schmidt eigenvalues of bipartite entanglement for a random pure state. Int. Math. Res. Not. doi:10.1093/imrn/rnq091, arXiv:0912.3999v2
Mehta, M.L.: Random Matrices, 3rd edn. Pure and Applied Mathematics, vol. 142. Elsevier/Academic Press, Amsterdam (2004)
MATH
Google Scholar
Pastur, L., Shcherbina, M.: Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles. J. Stat. Phys. 86(1–2), 109–147 (1997)
MATH
Article
MathSciNet
ADS
Google Scholar
Rosenzweig, N.: Statistical mechanics of equally likely quantum systems. In: Statistical Physics (Brandeis Summer Institute, 1962), vol. 3, pp. 91–158. Benjamin, Elmsford (1963)
Google Scholar
Soshnikov, A.: Universality at the edge of the spectrum in Wigner random matrices. Commun. Math. Phys. 207, 697–733 (1999)
MATH
Article
MathSciNet
ADS
Google Scholar
Soshnikov, A.: Determinantal point random fields. Russ. Math. Surv. 55(5), 923–975 (2000)
MATH
Article
MathSciNet
Google Scholar
Szegö, G.: Orthogonal Polynomials, 1st edn. Am. Math. Soc., New York (1939)
Google Scholar
Tao, T., Vu, V.: Random matrices: Universality of local eigenvalue statistics. arXiv:0906.0510
Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)
MATH
Article
MathSciNet
ADS
Google Scholar
Tracy, C.A., Widom, H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163, 33–72 (1994)
MATH
Article
MathSciNet
ADS
Google Scholar
Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996)
MATH
Article
MathSciNet
ADS
Google Scholar
Zhou, D.-S., Liu, D.-Z., Qian, T.: Fixed trace β-Hermite ensembles: Asymptotic eigenvalue density and the edge of the density. J. Math. Phys. 51, 033301 (2010)
Article
ADS
Google Scholar