Skip to main content
Log in

Optimal Stability of Advection-Diffusion Lattice Boltzmann Models with Two Relaxation Times for Positive/Negative Equilibrium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Despite the growing popularity of Lattice Boltzmann schemes for describing multi-dimensional flow and transport governed by non-linear (anisotropic) advection-diffusion equations, there are very few analytical results on their stability, even for the isotropic linear equation. In this paper, the optimal two-relaxation-time (OTRT) model is defined, along with necessary and sufficient (easy to use) von Neumann stability conditions for a very general anisotropic advection-diffusion equilibrium, in one to three dimensions, with or without numerical diffusion. Quite remarkably, the OTRT stability bounds are the same for any Peclet number and they are defined by the adjustable equilibrium parameters. Such optimal stability is reached owing to the free (“kinetic”) relaxation parameter. Furthermore, the sufficient stability bounds tolerate negative equilibrium functions (the distribution divided by the local mass), often labeled as “unphysical”. We prove that the non-negativity condition is (i) a sufficient stability condition of the TRT model with any eigenvalues for the pure diffusion equation, (ii) a sufficient stability condition of its OTRT and BGK/SRT sub-classes, for any linear anisotropic advection-diffusion equation, and (iii) unnecessarily more restrictive for any Peclet number than the optimal sufficient conditions. Adequate choices of the two relaxation rates and the free-tunable equilibrium parameters make the OTRT sub-class more efficient than the BGK one, at least in the advection-dominant regime, and allow larger time steps than known criteria of the forward time central finite-difference schemes (FTCS/MFTCS) for both, advection and diffusion dominant regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asinari, P., Karlin, I.V.: Generalized Maxwell state and H-theorem for computing fluid flows using the lattice Boltzmann method. Phys. Rev. E 79(3), 036703(5) (2009)

    Article  ADS  Google Scholar 

  2. Banda, M.K., Yong, W.A., Klar, A.: A stability notion for Lattice Boltzmann equations. SIAM J. Sci. Comput. 27(6), 2098–2111 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. d’Humières, D.: Generalized Lattice-Boltzmann equations. AIAA rarefied gas dynamics: theory and simulations. Prog. Astronaut. Aeronaut. 59, 450–548 (1992)

    Google Scholar 

  4. d’Humières, D., Ginzburg, I.: Viscosity independent numerical errors for Lattice Boltzmann models: from recurrence equations to “magic” collision numbers. Comput. Math. Appl. 58(5), 823–840 (2009)

    Article  MathSciNet  Google Scholar 

  5. d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360, 437–451 (2002)

    Article  MATH  ADS  Google Scholar 

  6. Du Fort, E.C., Frankel, S.P.: Stability conditions in the numerical treatment of parabolic differential equations. Math. Tab. Aids Comput. 7, 135 (1953)

    Article  MathSciNet  Google Scholar 

  7. Flekköy, E.G.: Lattice Bathnagar-Gross-Krook models for miscible fluids. Phys. Rev. E 47(6), 4247–4257 (1993)

    Article  ADS  Google Scholar 

  8. Ginzburg, I.: Equilibrium-type and Link-type Lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)

    Article  ADS  Google Scholar 

  9. Ginzburg, I.: Variably saturated flow described with the anisotropic Lattice Boltzmann methods. J. Comput. Fluids 25, 831–848 (2006)

    Article  Google Scholar 

  10. Ginzburg, I.: Lattice Boltzmann modeling with discontinuous collision components. Hydrodynamic and advection-diffusion equations. J. Stat. Phys. 126, 157–203 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Ginzburg, I.: Consistent Lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman-Enskog expansion. Phys. Rev. E 77, 0666704:1-12 (2008)

    Article  Google Scholar 

  12. Ginzburg, I.: Magic recipes for Lattice Boltzmann modeling of micro and macro flow. Habilitation Thesis, University Paris VI (2009). http://cemadoc.cemagref.fr/cemoa/PUB00025772

  13. Ginzburg, I., d’Humières, D.: Lattice Boltzmann and analytical modeling of flow processes in anisotropic and heterogeneous stratified aquifers. Adv. Water Resour. 30, 2202–2234 (2007)

    Article  ADS  Google Scholar 

  14. Ginzburg, I., Verhaeghe, F., d’Humières, D.: Two-relaxation-time Lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008)

    MathSciNet  Google Scholar 

  15. Higuera, F.J., Jiménez, J.: Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663–668 (1989)

    Article  ADS  Google Scholar 

  16. Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)

    Article  ADS  Google Scholar 

  17. Hindmarsch, A.C., Grescho, P.M., Griffiths, D.F.: The stability of explicit time-integration for certain finite difference approximation of the multi-dimensional advection-diffusion equation. Int. J. Num. Methods Fluids 84(4), 853–897 (1984)

    Article  Google Scholar 

  18. Kuzmin, A., Ginzburg, I., Mohamad, A.A.: A role of the kinetic parameter on the stability of two-relaxation-times advection-diffusion Lattice Boltzmann scheme. Comput. Math. Appl. (2010, revised)

  19. Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  20. Li, Y., Huang, P.: A coupled lattice Boltzmann model for advection and anisotropic dispersion problem in shallow water. Adv. Water Resour. 31(12), 1719–1730 (2008)

    Article  ADS  Google Scholar 

  21. Miller, J.J.H.: On the location of zeros of certaines classes of polynomials with application to numerical analysis. J. Inst. Math. Appl. 8, 397–406 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Mitchell, A.R., Griffiths, D.F.: The Finite Difference Method in Partial Differential Equations. Wiley, Chichester (1980)

    MATH  Google Scholar 

  23. Pan, C., Luo, L.-S., Miller, C.T.: An evaluation of lattice Boltzmann schemes for porous media simulation. J. Comput. Fluids 35(4), 898–909 (2006)

    Article  MATH  Google Scholar 

  24. Premnach, K.N., Abraham, J.: Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow. J. Comput. Phys. 224, 539–559 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  25. Qian, Y., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  MATH  ADS  Google Scholar 

  26. Reis, T., Phillips, T.N.: Alternative approach to the solution of the dispersion relation for a generalized lattice Boltzmann equation. Phys. Rev. E. 77, 026702-8 (2008)

    MathSciNet  ADS  Google Scholar 

  27. Rheinländer, M.: Stability and multiscale analysis of an advective lattice Boltzmann scheme. Prog. Comput. Fluid Dyn. 8(1–4), 56–68 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Servan-Camas, B., Tsai, F.T.C.: Lattice Boltzmann method for two relaxation times for advection-diffusion equation: third order analysis and stability analysis. Adv. Water Resour. 31, 1113–1126 (2008)

    Article  ADS  Google Scholar 

  29. Servan-Camas, B., Tsai, F.T.C.: Non-negativity and stability analysis of Lattice Boltzmann method for advection-diffusion equation. J. Comput. Phys. 228, 236–256 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Servan-Camas, B., Tsai, F.T.C.: Saltwater intrusion modeling in heterogeneous confined aquifers using two-relaxation -time Lattice Boltzmann method. Adv. Water. Resour. 32(4), 620–631 (2009)

    Article  ADS  Google Scholar 

  31. Suga, S.: Numerical schemes obtained from Lattice Boltzmann equations for advection diffusion equations. Int. J. Modern Phys. C 17(11), 1653–1677 (2006)

    Article  Google Scholar 

  32. Sukop, M.C., Thorne, Jr. D.T.: Lattice Boltzmann Modeling. An Introduction for Geoscientists and Engineers. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  33. van der Sman, R.G.M.: Finite Boltzmann schemes. Comput. Fluids 35, 849–854 (2006)

    Article  MATH  Google Scholar 

  34. van der Sman, R.G.M., Ernst, M.H.: Diffusion lattice Boltzmann scheme on an orthorhombic lattice. J. Stat. Phys. 94(1/2), 203–217 (1999)

    Article  MATH  Google Scholar 

  35. Wolf-Gladrow, D.: Lattice gas cellular automata and lattice Boltzmann models: an introduction. In: Lecture Notes in Mathematics, vol. 1725. Springer, Berlin (2000). ISBN 3-540-66973-6

    Google Scholar 

  36. Wolfram, S.: Software package “Mathematica 6” (2010)

  37. Zhang, X., Bengough, A.G., Deeks, L.K., Crawford, J.W., Young, I.M.: A lattice BGK model for advection and anisotropic dispersion equation. Adv. Water Resour. 25, 1–8 (2002)

    Article  MATH  Google Scholar 

  38. Zhang, X., Bengough, A.G., Deeks, L.K., Crawford, J.W., Young, I.M.: A novel three-dimensional lattice Boltzmann model for solute transport in variably saturated porous media. Water Resour. Res. 38, 1167–1177 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Ginzburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzburg, I., d’Humières, D. & Kuzmin, A. Optimal Stability of Advection-Diffusion Lattice Boltzmann Models with Two Relaxation Times for Positive/Negative Equilibrium. J Stat Phys 139, 1090–1143 (2010). https://doi.org/10.1007/s10955-010-9969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9969-9

Keywords

Navigation