Skip to main content
Log in

Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The decomposition arises from the (anti)symmetry under time-reversal on the level of the nonequilibrium action. The response formula involves a statistical averaging over explicitly known observables but, in contrast with the equilibrium situation, they depend on the model dynamics in terms of an excess in dynamical activity. As an example, the Einstein relation between mobility and diffusion constant is modified by a correlation term between the position and the momentum of the particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiesi, M., Maes, C., Wynants, B.: Fluctuations and response of nonequilibrium states. Phys. Rev. Lett. 103, 010602 (2009)

    Article  ADS  Google Scholar 

  2. Baiesi, M., Maes, C., Wynants, B.: Nonequilibrium linear response for Markov dynamics, I: Jump processes and overdamped diffusions. J. Stat. Phys. 137, 1094–1116 (2009).

    Article  MATH  ADS  Google Scholar 

  3. Balakrishnan, V.: Elements of Nonequilibrium Statistical Mechanics. Ane Books India (2008)

  4. Blickle, W., Speck, T., Lutz, C., Seifert, U., Bechinger, C.: Einstein relation generalized to nonequilibrium. Phys. Rev. Lett. 98, 210601 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Chetrite, R., Falkovich, G., Gawędzki, K.: Fluctuation relations in simple examples of non-equilibrium steady states. J. Stat. Mech. P08005 (2008)

  7. Diezemann, G.: Fluctuation-dissipation relations for Markov processes. Phys. Rev. E 72, 011104 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  8. Gomez-Solano, J.R., Petrosyan, A., Ciliberto, S., Chetrite, R., Gawędzki, K.: Experimental verification of a modified fluctuation-dissipation relation for a micron-sized particle in a non-equilibrium steady state. Phys. Rev. Lett. 103, 040601 (2009)

    Article  ADS  Google Scholar 

  9. Harada, T., Sasa, S.-Y.: Equality connecting energy dissipation with violation of fluctuation-response relation. Phys. Rev. Lett. 95, 130602 (2005)

    Article  ADS  Google Scholar 

  10. Katz, S., Lebowitz, J.L., Spohn, H.: Phase transitions in stationary non-equilibrium states of model lattice systems. Phys. Rev. B 28, 1655–1658 (1983)

    Article  ADS  Google Scholar 

  11. Krüger, M., Fuchs, M.: Phys. Rev. Lett. 102, 135701 (2009)

    Article  ADS  Google Scholar 

  12. Krüger, M., Fuchs, M.: Non-Equilibrium relation between mobility and diffusivity of interacting Brownian particles under shear. Prog. Theor. Phys. Suppl. arXiv:0911.1632v1 [cond-mat.soft]

  13. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)

    Article  ADS  Google Scholar 

  14. Lebowitz, J.L.: Stationary nonequilibrium Gibbsian ensembles. Phys. Rev. 114, 1192–1202 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Lebowitz, J.L., Spohn, H.: A Gallavotti–Cohen type symmetry in large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lippiello, E., Corberi, F., Zannetti, M.: Fluctuation dissipation relations far from equilibrium. J. Stat. Mech. P07002 (2007)

  17. Lippiello, E., Corberi, F., Sarracino, A., Zannetti, M.: Nonlinear susceptibilities and the measurement of a cooperative length. Phys. Rev. B 77, 212201 (2008)

    Article  ADS  Google Scholar 

  18. Maes, C.: Fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Maes, C.: On the origin and the use of fluctuation relations for the entropy. In: Dalibard, J., Duplantier, B., Rivasseau, V. (eds.) Séminaire Poincaré, vol. 2, pp. 11–29. Birkhäuser, Basel (2003)

    Google Scholar 

  20. Maes, C., Netočný, K.: Time-reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)

    Article  MATH  Google Scholar 

  21. Maes, C., Wynants, B.: On a response function and its interpretation. Markov Proc. Rel. Fields (2009)

  22. Maes, C., Netočný, K., Wynants, B.: Steady state statistics of driven diffusions. Physica A 387, 2675–2689 (2008)

    ADS  Google Scholar 

  23. Maes, C., Netočný, K., Wynants, B.: On and beyond entropy production; the case of Markov jump processes. Markov Proc. Rel. Fields 14, 445–464 (2008)

    MATH  Google Scholar 

  24. Martin, P.A.: Physique statistique des processus irreversibles. In: Lecture Notes of the DEA de Physique Théorique, notes by F. Coppex, ENS Lyon, Fall 2001–Spring 2004

  25. Puglisi, A., Villamaina, D.: Irreversible effects of memory. Europhys. Lett. 88, 30004 (2009)

    Article  ADS  Google Scholar 

  26. Puglisi, A., Baldassarri, A., Vulpiani, A.: Violation of the Einstein relation in Granular Fluids: the role of correlations. J. Stat. Mech. P08016 (2007)

  27. Ruelle, D.: A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22, 855–870 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Seifert, U., Speck, T.: The fluctuation-dissipation theorem for nonequilibrium steady states: role of stochastic entropy and a classification of variants. Europhys. Lett. 89, 10007 (2010)

    Article  ADS  Google Scholar 

  29. Speck, T., Seifert, U.: Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state. Europhys. Lett. 74, 391–396 (2006)

    Article  ADS  Google Scholar 

  30. Tasaki, H.: Two theorems that relate discrete stochastic processes to microscopic mechanics. arXiv:0706.1032 [cond-mat.stat-mech]

  31. Villamaina, D., Baldassarri, A., Puglisi, A., Vulpiani, A.: The fluctuation-dissipation relation: how does one compare correlation functions and responses? J. Stat. Mech. P07024 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bram Wynants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baiesi, M., Boksenbojm, E., Maes, C. et al. Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics. J Stat Phys 139, 492–505 (2010). https://doi.org/10.1007/s10955-010-9951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9951-6

Keywords

Navigation