Skip to main content
Log in

Replica Cluster Variational Method

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a general formalism to make the Replica-Symmetric and Replica-Symmetry-Breaking ansatz in the context of Kikuchi’s Cluster Variational Method (CVM). Using replicas and the message-passing formulation of CVM we obtain a variational expression of the replicated free energy of a system with quenched disorder, both averaged and on a single sample, and make the hierarchical ansatz using functionals of functions of fields to represent the messages. We obtain a set of integral equations for the message functionals. The main difference with the Bethe case is that the functionals appear in the equations in implicit form and are not positive definite, thus standard iterative population dynamic algorithms cannot be used to determine them. In the simplest cases the solution could be obtained iteratively using Fourier transforms.

We begin to study the method considering the plaquette approximation to the averaged free energy of the Edwards-Anderson model in the paramagnetic Replica-Symmetric phase. In two dimensions we find that the spurious spin-glass phase transition of the Bethe approximation disappears and the paramagnetic phase is stable down to zero temperature on the square lattice for different random interactions. The quantitative estimates of the free energy and of various other quantities improve those of the Bethe approximation. The plaquette approximation fails to predict a second-order spin-glass phase transition on the cubic 3D lattice but yields good results in dimension four and higher. We provide the physical interpretation of the beliefs in the replica-symmetric phase as disorder distributions of the local Hamiltonian. The messages instead do not admit such an interpretation and indeed they cannot be represented as populations in the spin-glass phase at variance with the Bethe approximation.

The approach can be used in principle to study the phase diagram of a wide range of disordered systems and it is also possible that it can be used to get quantitative predictions on single samples. These further developments present however great technical challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mézard, M., Parisi, G.: Eur. Phys. J. B 20, 217 (2001)

    Article  ADS  Google Scholar 

  2. Mézard, M., Parisi, G.: J. Stat. Phys. 111, 1 (2003)

    Article  MATH  Google Scholar 

  3. Mézard, M., Zecchina, R.: Phys. Rev. E 66, 056126 (2002)

    Article  ADS  Google Scholar 

  4. Mézard, M., Parisi, G., Zecchina, R.: Science 297, 812 (2002)

    Article  ADS  Google Scholar 

  5. Kabashima, Y., Saad, D.: Europhys. Lett. 44, 668–674 (1998)

    Article  ADS  Google Scholar 

  6. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Adv. Neural Inf. Process. Syst. (NIPS) 13, 689 (2000)

    Google Scholar 

  7. Yedidia, J.S., Freeman, W.T., Weis, Y.: IEEE Trans. Inf. Theory 51, 2282 (2005)

    Article  Google Scholar 

  8. Kikuchi, R.: Phys. Rev. 81, 988 (1951)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Morita, T., Suzuki, M., Wada, K., Kaburagi, M. (eds.): Foundations and Applications of Cluster Variation Method and Path Probability Method. Prog. Theor. Phys. Suppl., vol. 115 (1994)

  10. Hartmann, A.K., Young, A.P.: Phys. Rev. B 64, 180404(R) (2001)

    ADS  Google Scholar 

  11. Jörg, T., Lukic, J., Marinari, E., Martin, O.C.: Phys. Rev. Lett. 96, 237205 (2006)

    Article  ADS  Google Scholar 

  12. Ballesteros, H.G., et al.: Phys. Rev. B 61, 3215 (2000)

    Article  ADS  Google Scholar 

  13. Katsura, S., Fujiki, S.: J. Phys. C, Solid State Phys. 13, 4711 (1980)

    Article  ADS  Google Scholar 

  14. Fujiki, S., Katsura, S.: J. Phys. C, Solid State Phys. 13, 4723 (1980)

    Article  ADS  Google Scholar 

  15. Katsura, S., Nagahara, I.: J. Phys. C, Solid State Phys. 13, 4995 (1980)

    Article  ADS  Google Scholar 

  16. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  17. Crisanti, A., Paladin, G., Sommers, H.-J., Vulpiani, A.: J. Phys. I France 2, 1325 (1992)

    Article  Google Scholar 

  18. Parisi, G., Rizzo, T.: Phys. Rev. Lett. 101, 117205 (2008)

    Article  ADS  Google Scholar 

  19. Pelizzola, A.: J. Phys. A 38, R309 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. Goldschmidt, Y., De Dominicis, C.: Phys. Rev. B 41, 2186 (1989)

    Google Scholar 

  21. Monasson, R.: J. Phys. A 31, 513 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Parisi, G., Rizzo, T.: J. Phys. A, Math. Theor. 43, 045001 (2010)

    Article  ADS  Google Scholar 

  23. Ohzeki, M., Nishimori, H.: J. Phys. A, Math. Theor. 42, 332001 (2009)

    Article  MathSciNet  Google Scholar 

  24. Palmer, R.G., Adler, J.: Int. J. Mod. Phys. C 10, 667 (1999)

    Article  ADS  Google Scholar 

  25. Campbell, I.A., Hartmann, A.K., Katzgraber, H.G.: Phys. Rev. B 70, 054429 (2004)

    Article  ADS  Google Scholar 

  26. Boettcher, S.: Phys. Rev. B 67, 060403 (2003)

    Article  ADS  Google Scholar 

  27. Boettcher, S.: Eur. Phys. J. B 31, 29 (2003)

    Article  ADS  Google Scholar 

  28. Blackman, J.A., Goncalves, J.R., Poulter, J.: Phys. Rev. E 58, 1502 (1998)

    Article  ADS  Google Scholar 

  29. Lukic, J., Galluccio, A., Marinari, E., Martin, O.C., Rinaldi, G.: Phys. Rev. Lett. 92, 117202 (2004)

    Article  ADS  Google Scholar 

  30. Pelizzola, A.: Phys. Rev. B 61, 11510 (2000)

    Article  ADS  Google Scholar 

  31. Poulter, J., Blackman, J.A.: J. Phys. A 34, 7527 (2001)

    Article  MATH  ADS  Google Scholar 

  32. Aromsawa, A.: Ph.D. Thesis, Mahidol University (2007)

  33. Parisi, G., Rizzo, T.: Phys. Rev. B 79, 134205 (2009)

    Article  ADS  Google Scholar 

  34. Aspelmeier, T., Billoire, A., Marinari, E., Moore, M.A.: J. Phys. A, Math. Theor. 41, 324008 (2008)

    Article  MathSciNet  Google Scholar 

  35. Bouchaud, J.-P., Krzakala, F., Martin, O.C.: Phys. Rev. B 68, 224404 (2003)

    Article  ADS  Google Scholar 

  36. Wehr, J., Aizenman, M.: J. Stat. Phys. 60, 287 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Temesvari, T.: Nucl. Phys. B 829, 534 (2010)

    Article  ADS  Google Scholar 

  38. Aspelmeier, T., Moore, M.A.: Phys. Rev. Lett. 90, 177201 (2003)

    Article  ADS  Google Scholar 

  39. Wang, J.-S., Swendsen, R.H.: Phys. Rev. B 38, 4840 (1988)

    Article  ADS  Google Scholar 

  40. Saul, L., Kardar, M.: Phys. Rev. E 48, R3221 (1993)

    Article  ADS  Google Scholar 

  41. Saul, L., Kardar, M.: Nucl. Phys. B 432, 641 (1994)

    Article  ADS  Google Scholar 

  42. Wang, J.-S.: Phys. Rev. E 72, 036706 (2005)

    Article  ADS  Google Scholar 

  43. Katzgraber, H.G., Lee, L.W., Campbell, I.A.: cond-mat/0510668 (2005)

  44. Atisattapong, W., Poulter, J.: New J. Phys. 10, 093012 (2008)

    Article  ADS  Google Scholar 

  45. Katzgraber, H.G., Lee, L.W., Campbell, I.A.: Phys. Rev. B 75, 014412 (2007)

    Article  ADS  Google Scholar 

  46. Atisattapong, W., Poulter, J.: New J. Phys. 11, 063039 (2009)

    Article  ADS  Google Scholar 

  47. Pelizzola, A., Pretti, M.: Phys. Rev. B 60, 10134 (1999)

    Article  ADS  Google Scholar 

  48. Marinari, E., Zuliani, F.: J. Phys. A, Math. Gen. 32, 7447 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Klein, L., Adler, J., Aharony, A., Harris, A.B., Meir, Y.: Phys. Rev. B 43, 11249 (1991)

    Article  ADS  Google Scholar 

  50. Daboul, D., Chang, I., Aharony, A.: Eur. Phys. J. B 41, 231 (2004)

    Article  ADS  Google Scholar 

  51. Georges, A., Mézard, M., Yedidia, J.S.: Phys. Rev. Lett. 64, 2937 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Goldschmidt, Y.Y., Lai, P.-Y.: J. Phys. A 23, L775 (1990)

    Article  ADS  Google Scholar 

  53. Semerjian, G.: J. Stat. Phys. 130, 251 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. Kabashima, Y.: J. Phys. Soc. Jpn. 74, 2133 (2005)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Ricci-Tersenghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzo, T., Lage-Castellanos, A., Mulet, R. et al. Replica Cluster Variational Method. J Stat Phys 139, 375–416 (2010). https://doi.org/10.1007/s10955-010-9938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9938-3

Keywords

Navigation