Skip to main content
Log in

Transport Equation Evaluation of Coupled Continuous Time Random Walks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The transport behavior of a migrating particle in a disordered medium is exhibited in the solution of a transport equation derived from a coupled continuous time random walk (CTRW). A core aspect of CTRW is the spectrum of transitions in displacement s and time t, ψ(s,t), that characterizes the disordered system, which determine the transport. In many applications the CTRW approach has successfully accounted for the anomalous or non-Fickian nature of the particle plume propagation based on a power-law dependence ψ(t) in a decoupled p(s)ψ(t) approximation to ψ(s,t). For example, this power-law dependence in t derives from the complex Darcy flow fields in geological formations. Recently, the fully coupled CTRW was analyzed using a particle tracking approach, demonstrating that the decoupled approximation is valid only for a compact distribution of s. In this paper we solve the nonlocal-in-time transport equation with a ψ(s,t) containing a power-law dependence in both s (a Lévy-like distribution) and t, which necessitates the strong s,t coupling. We show enhanced transport behavior (relative to the plume propagation behavior reported in the literature) that derives from the rare large displacements in s (limited by the transition t). The interplay between the two coupled power laws is clearly shown in the changes in the breakthrough curves in the arrival times, dispersion and dependence on the velocity (v=s/t) distribution. Similar enhancements are exhibited in the particle tracking results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover Publications, Inc., New York (1970)

    Google Scholar 

  2. Berkowitz, B., Scher, H.: Theory of anomalous chemical transport in fracture networks. Phys. Rev. E 57(5), 5858–5869 (1998)

    Article  ADS  Google Scholar 

  3. Berkowitz, B., Klafter, J., Metzler, R., Scher, H.: Physical pictures of transport in heterogeneous media: advection-dispersion, random walk and fractional derivative formulations. Water Resour. Res. 38(10), 1191 (2002). doi:10.1029/2001WR001,030

    Article  ADS  Google Scholar 

  4. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006). doi:10.1029/2005RG000,178

    Article  ADS  Google Scholar 

  5. Bijeljic, B., Blunt, M.J.: Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. 42, W01,202 (2006). doi:10.1029/2005WR004,578

    Article  Google Scholar 

  6. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  7. de Hoog, F.R., Knight, J.H., Stokes, A.N.: An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. Stat. Comput. 3, 357–366 (1982)

    Article  MATH  Google Scholar 

  8. Dentz, M., Cortis, A., Scher, H., Berkowitz, B.: Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27(2), 155–173 (2004). doi:10.1016/j.advwatres.2003.11.002

    Article  ADS  Google Scholar 

  9. Dentz, M., Scher, H., Holder, D., Berkowitz, B.: Transport behavior of coupled continuous time random walks. Phys. Rev. E 78 (2008). doi:10.1103,041,110

  10. Di Donato, G., Obi, E.O., Blunt, M.J.: Anomalous transport in heterogeneous media demonstrated by streamline-based simulation. Geophys. Res. Lett. 30, 1608–1612 (2003). doi:10.1029/2003GL017,196

    Article  ADS  Google Scholar 

  11. Eggleston, J., Rojstaczer, S.: Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport. Water Resour. Res. 34(9), 2155–2168 (1998)

    Article  ADS  Google Scholar 

  12. Fiori, A., Janković, I., Dagan, G., Cvetković, V.: Ergodic transport through aquifers of non-Gaussian log-conductivity distribution and occurrence of anomalous behavior. Water Resour. Res. 43, W07,445 (2007). doi:10.1029/2007WR005,976

    Google Scholar 

  13. Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  14. Holder, D., Scher, H., Berkowitz, B.: Numerical study of diffusion on a random-mixed-bond lattice. Phys. Rev. E 77, 031119 (2008). doi:10.1103/PhysRevE.77.031119

    Article  ADS  Google Scholar 

  15. Klafter, J., Silbey, R.: Derivation of continuous-time random walk equations. Phys. Rev. A 44(2), 55–58 (1980)

    ADS  Google Scholar 

  16. Klafter, J., Blumen, A., Shlesinger, M.F.: Stochastic pathway to anomalous diffusion. Phys. Rev. A 35(7), 3081–3085 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  17. Lallemand-Barres, P., Peaudecerf, P.: Recherche des relations entre valeur de la dispersivité macroscopique d’un aquifére, ses autres caractéristiques et les conditions de mesure. Bull. Bur. Rech. Geol. Min. Fr. (Sect. 3) 4, 277–284 (1978)

    Google Scholar 

  18. Levitz, P.: The Pareto-Levy law and the distribution of income. Europhys. Lett. 39, 593 (1997)

    Article  ADS  Google Scholar 

  19. Lévy, P.: Théorie de l’Addition des Variables Alé atoires. Gauthier Villars, Paris (1937)

    Google Scholar 

  20. Mandelbrot, B.B.: From Knudsen diffusion to Levy walk. Int. Econ. Rev. 1, 79 (1960)

    Article  MATH  Google Scholar 

  21. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Scher, H., Lax, M.: Stochastic transport in a disordered solid. I. Theory. Phys. Rev. B 7(1), 4491–4502 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  23. Scher, H., Willbrand, K., Berkowitz, B.: Transport in disordered media with spatially nonuniform fields. Phys. Rev. E 81, 031102 (2010). doi:10.1103/PhysRevE.81.031102

    Article  ADS  Google Scholar 

  24. Shlesinger, M.F., Klafter, J., Wong, Y.M.: Random walks with infinite spatial and temporal moments. J. Stat. Phys. 27(3), 499–512 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Tyutnev, A.P., Saenko, V.S., Pozhidaev, E.D., Kolesnikov, V.: Verification of the dispersive charge transport in a hydrazone:polycarbonate molecularly doped polymer. J. Phys., Condens. Matter 21, 115107 (2009)

    Article  ADS  Google Scholar 

  26. Zhang, X., Lv, M.: Persistence of anomalous dispersion in uniform porous media demonstrated by pore-scale simulations. Water Resour. Res. 43, W07,437 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Berkowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scher, H., Willbrand, K. & Berkowitz, B. Transport Equation Evaluation of Coupled Continuous Time Random Walks. J Stat Phys 141, 1093–1103 (2010). https://doi.org/10.1007/s10955-010-0088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0088-4

Keywords

Navigation