Skip to main content
Log in

Colored Noise Enhanced Stability in a Tumor Cell Growth System Under Immune Response

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate a mathematical model for describing the growth of tumor cell under immune response, which is driven by cross-correlation between multiplicative and additive colored noises as well as the nonzero cross-correlation in between. The expression of the mean first-passage time (MFPT) is obtained by virtue of the steepest-descent approximation. It is found: (i) When the noises are negatively cross-correlated (λ<0), then the escape is faster than in the case with no correlation (λ=0); when the noises are positively cross-correlated (λ>0), then the escape is slower than in the case with no correlation. Moreover, in the case of positive cross-correlation, the escape time has a maximum for a certain intensity of one of the noises, i.e., the maximum for MFPT identifies the noise enhanced stability of the cancer state. (ii) The effect of the cross-correlation time τ 3 on the MFPT is completely opposite for λ>0 and λ<0. (iii) The self-correlation times τ 1 and τ 2 of colored noises can enhance stability of the cancer state, while the immune rate β can reduce it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bru, A., Albertos, S., García-Asenjo, J.A.L., Bru, I.: Pinning of tumoral growth by enhancement of the immune response. Phys. Rev. Lett. 92, 238101 (2004)

    Article  ADS  Google Scholar 

  2. Jiang, Y., Hu, G., Ma, B.K.: New growth model: the screened Eden model. Phys. Rev. B 39, 4572 (1989)

    Article  ADS  Google Scholar 

  3. Molski, M., Konarski, J.: Coherent states of Gompertzian growth. Phys. Rev. E 68, 021916 (2003)

    Article  ADS  Google Scholar 

  4. Kar, S., Banik, S.K., Ray, D.S.: Class of self-limiting growth models in the presence of nonlinear diffusion. Phys. Rev. E 65, 061909 (2002)

    Article  ADS  Google Scholar 

  5. Scalerandi, M., Sansone, B.C.: Inhibition of vascularization in tumor growth. Phys. Rev. Lett. 89, 218101 (2002)

    Article  ADS  Google Scholar 

  6. Messier, F.: Ungulate population models with predation: a case study with the North American moose. Ecology 75, 478 (1994)

    Article  Google Scholar 

  7. Sala, E., Graham, M.H.: Community-wide distribution of predator-prey interaction strength in kelp forests. Proc. Natl. Acad. Sci. USA 99, 3678 (2002)

    Article  ADS  Google Scholar 

  8. Lake, R.A., Robinson, B.W.S.: Immunotherapy and chemotherapy, a practical partnership. Nat. Rev. Cancer 5, 397 (2005)

    Article  Google Scholar 

  9. Kim, J.J., Tannock, I.F.: Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat. Rev. Cancer 5, 516 (2005)

    Article  Google Scholar 

  10. Woo, M.H., Peterson, J.K., Billups, C., Liang, H., Bjornsti, M.-A., Houghton, P.J.: Enhanced antitumor activity of irofulven in combination with irinotecan in pediatric solid tumor xenograft models. Cancer Chemother. Pharmacol. 55, 411 (2005)

    Article  Google Scholar 

  11. Thorn, R.M., Henney, C.S.: Kinetic analysis of target cell destruction by effector T cells: I. Delineation of parameters related to the frequency and lytic efficiency of killer cells. J. Immunol. 117, 2213 (1976)

    Google Scholar 

  12. Moy, P.M., Holmes, E.C., Golub, S.H.: Depression of natural killer cytotoxic activity in lymphocytes infiltrating human pulmonary tumors. Cancer Res. 45, 57 (1985)

    Google Scholar 

  13. Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37, 235 (1998)

    Article  MATH  Google Scholar 

  14. Fiasconaro, A., Spagnolo, B., Ochab-Marcinek, A., Gudowska-Nowak, E.: Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response. Phys. Rev. E 74, 041904 (2006)

    Article  ADS  Google Scholar 

  15. Garay, R.P., Lefever, R.: A kinetic approach to the immunology of cancer: stationary state properties of effector-target cell reactions. J. Theor. Biol. 73, 417 (1978)

    Article  MathSciNet  Google Scholar 

  16. Goel, N.S., Richter-Dyn, N.: Stochastic Models in Biology. Academic Press, New York (1974)

    Google Scholar 

  17. Mantovani, A., Allavena, P., Sica, A.: Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur. J. Cancer 40, 1660 (2004)

    Article  Google Scholar 

  18. Elliott, R.L., Blobe, G.C.: Role of transforming growth factor beta in human cancer. J. Clin. Oncol. 23, 2078 (2005)

    Article  Google Scholar 

  19. Ai, B.Q., Wang, X.J., Liu, G.T., Liu, L.G.: Correlated noise in a logistic growth model. Phys. Rev. E 67, 022903 (2003)

    Article  ADS  Google Scholar 

  20. Behera, A., O’Rourke, S.F.: Comment on “Correlated noise in a logistic growth model”. Phys. Rev. E 77, 013901 (2008)

    Article  ADS  Google Scholar 

  21. Ai, B.Q., Wang, X.J., Liu, L.G.: Reply to “Comment on ‘Correlated noise in a logistic growth model’ ”. Phys. Rev. E 77, 013902 (2008)

    Article  ADS  Google Scholar 

  22. Mei, D.C., Xie, C.W., Zhang, L.: The stationary properties and the state transition of the tumor cell growth mode. Eur. Phys. J. B 41, 107 (2004)

    Article  ADS  Google Scholar 

  23. Wang, C.J., Wei, Q., Mei, D.C.: Mean first-passage time of a cell tumor growth model subjected to a colored multiplicative noise and a white additive noise with colored cross-correlated noises. Mod. Phys. Lett. B 21, 789 (2007)

    Article  MATH  ADS  Google Scholar 

  24. Wang, C.J., Wei, Q., Mei, D.C.: Associated relaxation time and the normalized correlation function for a tumor cell growth system driven by color noises. Phys. Lett. A 372, 2176 (2008)

    Article  ADS  Google Scholar 

  25. Fiasconaro, A., Ochab-Marcinek, A., Spagnolo, B., Gudowska-Nowak, E.: Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment. Eur. Phys. J. B 65, 435 (2008)

    Article  ADS  Google Scholar 

  26. Zhong, W.R., Shao, Y.Z., He, Z.H.: Pure multiplicative stochastic resonance of a theoretical anti-tumor model with seasonal modulability. Phys. Rev. E 73, 060902(R) (2006)

    ADS  Google Scholar 

  27. Zhong, W.R., Shao, Y.Z., He, Z.H.: Spatiotemporal fluctuation-induced transition in a tumor model with immune surveillance. Phys. Rev. E 74, 011916 (2006)

    Article  ADS  Google Scholar 

  28. Zhong, W.R., Shao, Y.Z., Li, L., et al.: Spatiotemporal noise triggering infiltrative tumor growth with immunosurveillance. Europhys. Lett. 82, 20003 (2008)

    Article  ADS  Google Scholar 

  29. Bose, T., Trimper, S.: Stochastic model for tumor growth with immunization. Phys. Rev. E 79, 051903 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  30. Ochab-Marcinek, A., Gudowska-Nowak, E.: Population growth and control in stochastic models of cancer development. Physica A 343, 557 (2004)

    ADS  Google Scholar 

  31. Zeng, C., Zhou, X., Tao, S.: Cross-correlation enhanced stability in a tumor cell growth model with immune surveillance driven by cross-correlated noises. J. Phys. A: Math. Theor. 42, 495002 (2009)

    Article  MathSciNet  Google Scholar 

  32. Zeng, C.: Effects of correlated noise in a tumor cell growth model in the presence of immune response. Phys. Scr. 81, 025009 (2010)

    Article  ADS  Google Scholar 

  33. Jia, Y., Zheng, X.P., Hu, X.M., Li, J.R.: Effects of colored noise on stochastic resonance in a bistable system subject to multiplicative and additive noise. Phys. Rev. E 63, 031107 (2001)

    Article  ADS  Google Scholar 

  34. Luo, X., Zhu, S.: Stochastic resonance driven by two different kinds of colored noise in a bistable system. Phys. Rev. E 67, 021104 (2003)

    Article  ADS  Google Scholar 

  35. Madureira, A.J.R., Hänggi, P., Wio, H.S.: Giant suppression of the activation rate in the presence of correlated white noise sources. Phys. Lett. A 217, 248 (1996)

    Article  ADS  Google Scholar 

  36. Kłosek-Dygas, M.M., Matkowsky, B.J., Schuss, Z.: Colored noise in dynamical systems. SIAM J. Appl. Math. 48, 425 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kłosek-Dygas, M.M., Hagan, P.S.: Colored noise and a characteristic level crossing. J. Math. Phys. 39, 931 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  38. Liang, G.Y., Cao, L., Wu, D.J.: Moments of intensity of single-mode laser driven by additive and multiplicative colored noises with colored cross-correlation. Phys. Lett. A 294, 190 (2002)

    Article  ADS  Google Scholar 

  39. Mei, D.C., Xie, G.Z., Cao, L., Wu, D.J.: Mean first-passage time of a bistable kinetic model driven by cross-correlated noises. Phys. Rev. E 59, 3880 (1999)

    Article  ADS  Google Scholar 

  40. Jia, Y., Li, J.R.: Transient properties of a bistable kinetic model with correlations between additive and multiplicative noises: mean first-passage time. Phys. Rev. E 53, 5764 (1996)

    Article  ADS  Google Scholar 

  41. Jia, Y., Li, J.R.: Stochastic system with colored correlation between white noise and colored noise. Physica A 252, 417 (1998)

    Article  Google Scholar 

  42. Liang, G.Y., Cao, L., Wu, D.J.: Approximate Fokker–Planck equation of system driven by multiplicative colored noises with colored cross-correlation. Physica A 335, 371 (2004)

    Article  ADS  Google Scholar 

  43. Kłosek-Dygas, M.M., Matkowsky, B.J., Schuss, Z.: Uniform asymptotic expansions in dynamical systems driven by colored noise. Phys. Rev. A 38, 2605 (1988)

    Article  ADS  Google Scholar 

  44. Kłosek-Dygas, M.M., Matkowsky, B.J., Schuss, Z.: Colored noise in activated rate processes. J. Stat. Phys. 34, 1309 (1989)

    Article  Google Scholar 

  45. Zeng, C.H., Zhou, X.F., Tao, S.F.: Stochastic resonance in a bacterium growth system subjected to colored noises. Commun. Theor. Phys. 52, 615 (2009)

    Article  MATH  Google Scholar 

  46. Hu, G.: Power-series expansion of the potential of the Fokker-Planck equation. Phys. Rev. A 38, 3693 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  47. Hu, G.: Solvable model of the Fokker-Planck equation without detailed balance. Phys. Rev. A 39, 1286 (1989)

    Article  ADS  Google Scholar 

  48. Hu, G.: Two-dimensional probability distribution of systems driven by colored noise. Phys. Rev. A 43, 700 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  49. Wu, D.J., Cao, L., Ke, S.Z.: Bistable kinetic model driven by correlated noises: steady-state analysis. Phys. Rev. E 50, 2496 (1994)

    Article  ADS  Google Scholar 

  50. Jia, Y., Li, J.R.: Steady-state analysis of a bistable system with additive and multiplicative noises. Phys. Rev. E 53, 5786 (1996)

    Article  ADS  Google Scholar 

  51. Novikov, E.A.: Functionals and the method of random forces in turbulence theory. Zh. Eksp. Teor. Fiz. 47, 1919 (1964)

    Google Scholar 

  52. Novikov, E.A.: Functionals and the random-force method in turbulence theory. Sov. Phys. JETP 20, 1290 (1965)

    Google Scholar 

  53. Fox, R.F.: Uniform convergence to an effective Fokker-Planck equation for weakly colored noise. Phys. Rev. A 34, 4525 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  54. Hänggi, P., Mroczkowski, T.T., Moss, F., McClintock, P.V.E.: Bistability driven by colored noise: theory and experiment. Phys. Rev. A 32, 695 (1985)

    Article  ADS  Google Scholar 

  55. Prigogine, I., Lefever, R.: Stability problems in cancer growth and nucleation. Comp. Biochem. Physiol. B 67, 389 (1980)

    Article  Google Scholar 

  56. Lefever, R., Garay, R.: In: Valleron, A.J., Macdonald, P.D.M. (eds.) Local Description of Immune Tumor Rejection, Biomathematics and Cell Kinetics, p. 333. Elsevier, Amsterdam (1978)

    Google Scholar 

  57. Lefever, R., Horsthemke, W.: Bistability in fluctuating environments implications in tumor immunology. Bull. Math. Biol. 41, 469 (1979)

    MATH  Google Scholar 

  58. Bru, A., Albertos, S., Subiza, J.L., Garcia-Asenjo, J.A.L., Bru, I.: The universal dynamics of tumor growth. Biophys. J. 85, 2948 (2003)

    Article  ADS  Google Scholar 

  59. Zeng, C.H., Xie, C.W.: Dynamical properties of an anti-tumor cell growth system in the presence of delay and correlated noises. Mod. Phys. Lett. B 23, 1651 (2009)

    Article  MATH  ADS  Google Scholar 

  60. Fox, R.F.: Functional-calculus approach to stochastic differential equations. Phys. Rev. A 33, 467 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  61. Hänggi, P., Marchesoni, F., Grigolini, P.: Bistable flow driven by coloured gaussian noise: a critical study. Z. Phys. B 56, 333 (1984)

    Article  ADS  Google Scholar 

  62. Gardiner, C.W.: Handbook of Stochastic Methods. Springer Series in Synergetics, vol. 13. Springer, Berlin (1983)

    MATH  Google Scholar 

  63. Guardia, E., Miguel, M.S.: Escape time and state dependent fluctuations. Phys. Lett. A 109, 9 (1985)

    Article  ADS  Google Scholar 

  64. Jia, Y., Yu, S.N., Li, J.R.: Stochastic resonance in a bistable system subject to multiplicative and additive noise. Phys. Rev. E 62, 1869 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, C., Wang, H. Colored Noise Enhanced Stability in a Tumor Cell Growth System Under Immune Response. J Stat Phys 141, 889–908 (2010). https://doi.org/10.1007/s10955-010-0068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0068-8

Keywords

Navigation