Skip to main content
Log in

Scalings for a Ballistic Aggregation Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a mean field type equation for ballistic aggregation of particles whose density function depends both on the mass and momentum of the particles. For the case of a constant aggregation rate we prove the existence of self-similar solutions and the convergence of more general solutions to them. We are able to estimate the large time decay of some moments of general solutions or to build some new classes of self-similar solutions for several classes of mass and/or momentum dependent rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertoin, J.: Clustering statistics for sticky particles with Brownian initial velocity. J. Math. Pures Appl. 79, 173–194 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Bertoin, J.: Self-attracting poisson clouds in an expanding universe. Commun. Math. Phys. 232, 59–81 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bobylev, A.V., Illner, R.: Collision integrals for attractive potentials. J. Stat. Phys. 95, 633–649 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brilliantov, N.V., Bodrova, A.S., Krapivsky, P.L.: A model of ballistic aggregation and fragmentation. J.  Stat. Mech. P06011 (2009)

  5. Brilliantov, N.V., Spahn, F.: Dust coagulation in equilibrium molecular gas. Math. Comput. Simul. 72, 93–97 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carnevale, G.F., Pomeau, Y., Young, W.R.: Statistics of Ballistic Agglomeration. Phys. Rev. Lett. 64, 2913–2916 (1990)

    Article  ADS  Google Scholar 

  7. Escobedo, M., Laurençot, Ph., Mischler, S.: On a kinetic equation for coalescing particles. Commun. Math. Phys. 246, 237–267 (2004)

    Article  MATH  ADS  Google Scholar 

  8. Escobedo, M., Mischler, S.: On a quantum Boltzmann equation for a gas of photons. J. Math. Pures Appl. 80, 471–515 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Escobedo, M., Mischler, S.: On self-similarity for the coagulation equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 331–362 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Escobedo, M., Mischler, S., Ricard, M.R.: On self-similarity and stationary problem for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 99–125 (2005)

    Article  MATH  ADS  Google Scholar 

  11. Estrada, P.R., Cuzzi, J.N.: Solving the coagulation equation by the moments method. Astrophys. J. 682, 515–526 (2008)

    Article  ADS  Google Scholar 

  12. Fournier, N., Laurençot, Ph.: Existence of self-similar solutions to Smoluchowski’s coagulation equation. Commun. Math. Phys. 256, 589–609 (2005)

    Article  MATH  ADS  Google Scholar 

  13. Fournier, N., Mischler, S.: A Boltzmann equation for elastic, inelastic, and coalescing collisions. J. Math. Pures Appl. 84, 1173–1234 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Illner, R.: Stellar dynamics and plasma physics with corrected potentials: Vlasov, Manev, Boltzmann, Smoluchowski. In: Hydrodynamic Limits and Related Topics, Toronto, ON, 1998. Fields Inst. Commun., vol. 27, pp. 95–108. Am. Math. Soc., Providence (2000)

    Google Scholar 

  15. Jiang, Y., Leyvraz, F.: Scaling theory for ballistic aggregation. J. Phys. A, Math. Gen. 26, L179–L186 (1993)

    Article  ADS  Google Scholar 

  16. Krapivsky, P.L., Ben-Naim, E.: Aggregation with multiple conservation laws. Phys. Rev. E 53, 291–298 (1996)

    Article  ADS  Google Scholar 

  17. Laurençot, Ph., Mischler, S.: On coalescence equations and related models. In: Modeling and Computational Methods for Kinetic Equations. Model. Simul. Sci. Eng. Technol., pp. 321–356. Birkhauser Boston, Boston (2004)

    Google Scholar 

  18. Leyvraz, F.: Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys. Rep. 383(2–3), 95–212 (2003)

    Article  ADS  Google Scholar 

  19. Lynden-Bell, D.: Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astron. Soc. 136, 101–121 (1967)

    ADS  Google Scholar 

  20. Mischler, S., Mouhot, C.: Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres. Commun. Math. Phys. 3, 287 (2009)

    MathSciNet  Google Scholar 

  21. Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16, 467–501 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9, 78–109 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Morfill, G., Röser, S., Tscharnuter, W., Völk, H.: The dynamics of dust in a collapsing protostellar cloud and its possible role in planet formation. Moon Planets 19, 211–220 (1978)

    Article  ADS  Google Scholar 

  24. Roquejoffre, J.M., Villedieu, Ph.: A kinetic model for droplet coalescence in dense sprays. Math. Models Methods Appl. Sci. 11, 867–882 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  26. Smoluchowski, M.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 129–168 (1917)

    Google Scholar 

  27. Spahn, F., Albers, N., Sremčević, M., Thornton, C.: Kinetic description of coagulation and fragmentation in dilute granular particle ensembles. Europhys. Lett. 67, 545–551 (2004)

    Article  ADS  Google Scholar 

  28. Trizac, E., Hansen, J.P.: Dynamic scaling behavior of ballistic coalescence. Phys. Rev. Lett. 74, 4114–4117 (1995)

    Article  ADS  Google Scholar 

  29. Trizac, E., Krapivsky, P.L.: Correlations in ballistic processes. Phys. Rev. Lett. (2003). doi:10.1103/PhysRevLett.91.218302

    MATH  Google Scholar 

  30. Wetherill, G.: The Formation and Evolution of Planetary Systems. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  31. Williams, F.A.: Spray combustion and atomization. Phys. Fluids 1, 541–545 (1958)

    Article  MATH  ADS  Google Scholar 

  32. Wurm, G., Blum, J.: Experiments on preplanetary dust aggregation. Icarus 132, 125–136 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Escobedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobedo, M., Mischler, S. Scalings for a Ballistic Aggregation Equation. J Stat Phys 141, 422–458 (2010). https://doi.org/10.1007/s10955-010-0060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0060-3

Keywords

Navigation