Skip to main content

Advertisement

Log in

Dynamical Localization of Quantum Walks in Random Environments

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The dynamics of a one dimensional quantum walker on the lattice with two internal degrees of freedom, the coin states, is considered. The discrete time unitary dynamics is determined by the repeated action of a coin operator in U(2) on the internal degrees of freedom followed by a one step shift to the right or left, conditioned on the state of the coin. For a fixed coin operator, the dynamics is known to be ballistic.

We prove that when the coin operator depends on the position of the walker and is given by a certain i.i.d. random process, the phenomenon of Anderson localization takes place in its dynamical form. When the coin operator depends on the time variable only and is determined by an i.i.d. random process, the averaged motion is known to be diffusive and we compute the diffusion constants for all moments of the position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Ambainis, A., Aharonov, D., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of 33rd ACM STOC, pp. 50–59 (2001)

  4. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of SODA’05, pp. 1099–1108 (2005)

  5. Ao, P.: Absence of localization in energy space of a Bloch electron driven by a constant electric force. Phys. Rev. B 41, 3998–4001 (1989)

    Article  ADS  Google Scholar 

  6. Asch, J., Duclos, P., Exner, P.: Stability of driven systems with growing gaps, quantum rings, and Wannier ladders. J. Stat. Phys. 92, 1053–1070 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  8. Bougerol, O., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. Birkhäuser Progress in Probability and Statistics. Birkhäuser, Basel (1985)

    Book  MATH  Google Scholar 

  9. Bourget, O., Howland, J.S., Joye, A.: Spectral analysis of unitary band matrices. Commun. Math. Phys. 234, 191–227 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Blatter, G., Browne, D.: Zener tunneling and localization in small conducting rings. Phys. Rev. B 37, 3856 (1988)

    Article  ADS  Google Scholar 

  11. Cantero, M.J., Grünbaum, F.A., Morales, L., Velàzquez, L.: Matrix valued Szegö polynomials and quantum random walks. Commun. Pure Appl. Math. 63, 464–507 (2009)

    Google Scholar 

  12. Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108, 41–66 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Chen, A., Renshaw, E.: The Gillis-Domb-Fisher correlated random walk. J. Appl. Probab. 29, 792–813 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. de Oliveira, C.R., Simsen, M.S.: A Floquet operator with purely point spectrum and energy instability. Ann. Henri Poincaré 7, 1255–1277 (2008)

    Google Scholar 

  15. Hamza, E.: Localization properties for the unitary Anderson model. PhD thesis, University of Alabama at Birmingham (2007). http://www.mhsl.uab.edu/dt/2008r/hamza.pdf

  16. Hamza, E., Stolz, G.: Lyapunov exponents for unitary Anderson models. J. Math. Phys. 48, 043301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  17. Hamza, E., Joye, A., Stolz, G.: Dynamical localization for unitary Anderson models. Math. Phys. Anal. Geom. 12, 381–444 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Joye, A.: Fractional moment estimates for random unitary operators. Lett. Math. Phys. 72(1), 51–64 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Karski, M., Förster, L., Chioi, J.M., Streffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325, 174–177 (2009)

    Article  ADS  Google Scholar 

  20. Keating, J.P., Linden, N., Matthews, J.C.F., Winter, A.: Localization and its consequences for quantum walk algorithms and quantum communication. Phys. Rev. A 76, 012315 (2007)

    Article  ADS  Google Scholar 

  21. Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44, 307–327 (2003)

    Article  ADS  Google Scholar 

  22. Konno, N.: One-dimensional discrete-time quantum walks on random environments. Quantum Inf. Process. 8, 387–399 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Konno, N.: Localization of an inhomogeneous discrete-time quantum walk on the line. Quantum Inf. Process. (to appear)

  24. Konno, N.: Quantum walks. In: Schürmann, F. (ed.) Quantum Potential Theory. Lecture Notes in Mathematics, vol. 1954, pp. 309–452. Springer, Berlin (2009)

    Chapter  Google Scholar 

  25. Kos’k, J., Buzek, V., Hillery, M.: Quantum walks with random phase shifts. Phys. Rev. A 74, 022310 (2006)

    Article  ADS  Google Scholar 

  26. Lenstra, D., van Haeringen, W.: Elastic scattering in a normal-metal loop causing resistive electronic behavior. Phys. Rev. Lett. 57, 1623–1626 (1986)

    Article  ADS  Google Scholar 

  27. Magniez, F., Nayak, A., Richter, P.C., Santha, M.: On the hitting times of quantum versus random walks. In: 20th SODA, pp. 86–95 (2009)

  28. Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)

    Article  MATH  ADS  Google Scholar 

  29. Renshaw, E., Henderson, R.: The correlated random walk. J. Appl. Probab. 18, 403–414 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ryu, J.-W., Hur, G., Kim, S.W.: Quantum localization in open chaotic systems. Phys. Rev. E 037201 (2008)

  31. Santha, M.: Quantum walk based search algorithms. In: 5th TAMC. LNCS, vol. 4978, pp. 31–46. Springer, Berlin (2008)

    Google Scholar 

  32. Shapira, D., Biham, O., Bracken, A.J., Hackett, M.: One dimensional quantum walk with unitary noise. Phys. Rev. A 68, 062315 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  33. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  34. Yin, Y., Katsanos, D.E., Evangelou, S.N.: Quantum walks on a random environment. Phys. Rev. A 77, 022302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  35. Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. arXiv:0911.1876v1 [quant-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Joye.

Additional information

A. Joye is partially supported by the Agence Nationale de la Recherche, grant ANR-09-BLAN-0098-01.

M. Merkli is partly supported by NSERC Discovery Grant 205247, and by the Institut Fourier through a one-month stay as a professeur invité.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joye, A., Merkli, M. Dynamical Localization of Quantum Walks in Random Environments. J Stat Phys 140, 1025–1053 (2010). https://doi.org/10.1007/s10955-010-0047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0047-0

Keywords

Navigation