Skip to main content
Log in

Discrete Stochastic Modeling for Epidemics in Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we construct a microscopic mechanism for the epidemic processes in heterogeneous populations, which contains two basic assumptions: all edges of the network are broken and reconnected at every time step among the epidemic process; the probability of randomly chosen two half-edges to make a pair is identical. We define the stochastic epidemic process and get the epidemic distributions numerically according to the transmission probability λ. Two different phases are observed, which means the onset of phase transition, and the threshold value is very small. Under the thermodynamic limit, the process can be approximated by a deterministic dynamical system. About this deterministic system, we get the analytical threshold value, which is consistent with the numerical results of the epidemic distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford Univ. Press, Oxford (1991)

    Google Scholar 

  2. Hethcote, H.W.: SIAM Rev. 42, 599 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Durrett, R.: SIAM Rev. 41, 677–718 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Boccara, N., Cheong, K.: J. Phys. A, Math. Gen. 25, 2447–2461 (1992)

    Article  MATH  ADS  Google Scholar 

  5. Bharucha-Reid, A.T.: Elements of the Theory of Markov Processes and Their Application. McGraw-Hill, New York (1960)

    Google Scholar 

  6. Anderson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis. Springer, Berlin (2000)

    Book  Google Scholar 

  7. Ben-Naim, E., Krapivsky, P.L.: Phys. Rev. E 69, 050901(R) (2004)

    Article  ADS  Google Scholar 

  8. Kessler, D.A., Shnerb, N.M.: Phys. Rev. E 76, 010901 (2007)

    Article  ADS  Google Scholar 

  9. Albert, R., Barabási, A.L.: Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MATH  ADS  Google Scholar 

  10. Dorogovtsev, S.N., Mendes, J.F.F.: Adv. Phys. 51, 1079 (2002)

    Article  ADS  Google Scholar 

  11. Liljeros, F., Rdling, C.R., Amaral, L.A.N., Stanley, H.E., Abers, Y.: Nature 411, 907 (2001)

    Article  ADS  Google Scholar 

  12. Colizza, V., et al.: PNAS 103, 2015–2020 (2006)

    Article  ADS  Google Scholar 

  13. Hufnagel, L., Brockmann, D., Geisel, T.: PNAS 101, 15124–15129 (2004)

    Article  ADS  Google Scholar 

  14. Broder, A., et al.: Comput. Netw. 33, 309–320 (2000)

    Article  Google Scholar 

  15. Barabási, A.L., Albert, R., Jeong, H.: Physica A 281, 69–77 (2000)

    Article  ADS  Google Scholar 

  16. Pastor-Satorras, R., Vespignani, A.: Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  17. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Eur. Phys. J. B 26, 521 (2002)

    ADS  Google Scholar 

  18. May, R.M., Lloyd, A.L.: Phys. Rev. E 64, 066112 (2001)

    Article  ADS  Google Scholar 

  19. Gillespie, D.T.: J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  20. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Zeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JZ., Qian, M. Discrete Stochastic Modeling for Epidemics in Networks. J Stat Phys 140, 1157–1166 (2010). https://doi.org/10.1007/s10955-010-0034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0034-5

Keywords

Navigation