Skip to main content
Log in

Exact Sampling of Self-avoiding Paths via Discrete Schramm-Loewner Evolution

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present an algorithm, based on the iteration of conformal maps, that produces independent samples of self-avoiding paths in the plane. It is a discrete process approximating radial Schramm-Loewner evolution growing to infinity. We focus on the problem of reproducing the parametrization corresponding to that of lattice models, namely self-avoiding walks on the lattice, and we propose a strategy that gives rise to discrete paths where consecutive points lie an approximately constant distance apart from each other. This new method allows us to tackle two non-trivial features of self-avoiding walks that critically depend on the parametrization: the asphericity of a portion of chain and the correction-to-scaling exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Des Cloizeaux, J., Jannink, G.: Polymers in Solution: Their Modelling and Structure. Oxford University Press, New York (1990)

    Google Scholar 

  2. Schäfer, L.: Excluded Volume Effects in Polymer Solutions. Springer, Berlin-New York (1999)

    Book  Google Scholar 

  3. Madras, N., Slade, G.: The Self-avoiding Walk. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  4. Guttmann, A.J., Conway, A.R.: Square lattice self-avoiding walks and polygons. Ann. Comb. 5, 319–345 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sokal, A.D.: Monte Carlo methods for the self-avoiding walk. Nucl. Phys. B 47, 172–179 (1996)

    Article  Google Scholar 

  6. Janse van Rensburg, E.J.: Monte Carlo methods for the self-avoiding walk. J. Phys. A, Math. Theor. 42, 323001 (2009)

    Article  MathSciNet  Google Scholar 

  7. Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walks. Proc. Symp. Pure Math. 72(2), 339–364 (2004)

    Article  MathSciNet  Google Scholar 

  8. Kennedy, T.: The length of an SLE—Monte Carlo studies. J. Stat. Phys. 128, 1263–1277 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Gherardi, M.: Whole-plane self-avoiding walks and radial Schramm-Loewner evolution: a numerical study. J. Stat. Phys. 136, 864–874 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Lawler, G.F.: Dimension and natural parametrization for SLE curves. Preprint. arXiv:0712.3263v1 [math.PR]

  11. Lawler, G.F., Sheffield, S.: The natural parametrization for the Schramm-Loewner evolution. Preprint. arXiv:0906.3804v1 [math.PR]

  12. Lawler, G.F.: Conformally invariant processes in the plane. In: Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence (2005)

    Google Scholar 

  13. Werner, W.: Random planar curves and Schramm-Loewner evolutions (Lecture notes from the 2002 Saint-Flour summer school). L. N. Math. 1840, 107–195 (2004)

    Google Scholar 

  14. Cardy, J.: SLE for theoretical physicists. Ann. Phys. 318, 81–118 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Kager, W., Nienhuis, B.: A guide to stochastic Loewner evolution and its applications. J. Stat. Phys. 115, 1149–1229 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Bauer, M., Bernard, D.: 2D growth processes: SLE and Loewner chains. Phys. Rept. 432, 115–221 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. Bauer, R.O.: Discrete Löwner evolution. Ann. Fac. Sci. Toulouse VI 12, 433–451 (2003)

    Article  MATH  ADS  Google Scholar 

  18. Kennedy, T.: Monte Carlo comparisons of the self-avoiding walk and SLE as parametrized curves. Preprint. arXiv:math/0612609v2 [math.PR]

  19. Witten, T.A., Sander, L.M.: Diffusion-limited aggregation: a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Article  ADS  Google Scholar 

  20. Hastings, M.B., Levitov, L.S.: Laplacian growth as one-dimensional turbulence. Physica D 116, 244–252 (1998)

    Article  MATH  ADS  Google Scholar 

  21. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hastings, M.B.: Exact multifractal spectra for arbitrary Laplacian random walks. Phys. Rev. Lett. 88, 055506 (2002)

    Article  ADS  Google Scholar 

  23. Madras, N., Sokal, A.D.: The pivot algorithm: a highly efficient Monte Carlo method for the self-avoiding walk. J. Stat. Phys. 50, 109–186 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Kennedy, T.: A Faster implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys. 106, 407–429 (2002)

    Article  MATH  Google Scholar 

  25. Saleur, H.: Conformal invariance for polymers and percolation. J. Phys. A, Math. Gen. 20 (1987)

  26. Caracciolo, S., Guttmann, A.J., Jensen, I., Pelissetto, A., Rogers, A.N., Sokal, A.D.: Correction-to-scaling exponents for two-dimensional self-avoiding walks. J. Stat. Phys. 120, 1037–1100 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Gherardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gherardi, M. Exact Sampling of Self-avoiding Paths via Discrete Schramm-Loewner Evolution. J Stat Phys 140, 1115–1129 (2010). https://doi.org/10.1007/s10955-010-0031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0031-8

Keywords

Navigation